Monitoring of Lactic Fermentation with a Coupling Electronic Nose and Gas Chromatography


In this work, the performance of dehydratation-desalcoholization system based on an electronic nose coupled to gas chromatography was tested. The system was used for monitoring the volatile compounds produced during a lactic fermentation with a heterofermentative bacteria (Lactobacillus fermentum Ogi E1). The monitoring was carried out with dehydratation and desalcoholization or dehydratation only, on the basis of low ethanol concentration produced by this bacteria. In the first case, fermentation head-space analyses showed low signals from each gas sensor, then the principal components analyses (PCA) resulted confused. However with the only dehydratation system, the electronic nose was able to detect some volatile compounds during bioprocess. The PCA showed a single distribution, permitting to conclude that principal component 1 represented the ethanol concentration. The system is appropriate to monitor some parameters during the fermentations process as ethanol, lactate and biomass concentration.

Share and Cite:

M. Calderon-Santoyo, P. Bautista-Rosales, G. Luna-Solano, C. Ghommidh and J. Ragazzo-Sanchez, "Monitoring of Lactic Fermentation with a Coupling Electronic Nose and Gas Chromatography," Engineering, Vol. 5 No. 9A, 2013, pp. 13-19. doi: 10.4236/eng.2013.59A002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] E. R. Thaler and C. W. Hanson, “Medical Applications of Electronic Nose Technology,” Expert Review of Medical Devices, Vol. 2, No. 5, 2005, pp. 559-566.
[2] A. Rudnitskaya and A. Legin, “Sensor Systems, Electronic Tongues and Electronic Noses, for Monitoring of Biotechnological Processes,” Journal of Industrial Microbiology & Biotechnology, Vol. 35, No. 5, 2008, pp. 443-451.
[3] M. Peris and L. Escuder-Gilabert, “A 21st Century Technique for Food Control: Electronic Noses,” Analytica Chimica Acta, Vol. 638, No. 1, 2009, pp. 1-15. doi:10.1016/j.aca.2009.02.009
[4] J. W. Gardner and P. N. Barlett, “A brief history of electronic nose,” Sensors and Actuators B: Chemical, Vol. 46, No. 1, 1994, pp. 211-220.
[5] H. Yu, Y. Wang and J. Wang, “Identification of Tea Storage Times by Linear Discrimination Analysis and Backpropagation Neural Network Techniques Based on the Eigenvalues of Principal Components Analysis of E-Nose Sensor Signals,” Sensors, Vol. 9, No. 10, 2009, pp. 80738082. doi:10.3390/s91008073
[6] J. A. Ragazzo-Sanchez, P. Chalier, D. Chevalier, M. Calderon-Santoyo and C. Ghommidh, “Identification of Different Alcoholic Beverages by Electronic Nose Coupled to GC,” Sensors and Actuators B: Chemical, Vol. 134, No. 1, 2008, pp. 43-48. doi:10.1016/j.snb.2008.04.006
[7] H. Zhang, J. Wang and S. Ye, “Prediction of Soluble Solids Content, Firmness and pH of Pear by Signals of Electronic Nose Sensors,” Analytica Chimica Acta, Vol. 606, No. 1, 2008, pp. 112-118.
[8] H. Yu, Y. Wang, H. Xiao and M. Liu, “Quality Grade Identification of Green Tea Using the Eigenvalues of PCA Based on the E-Nose Signals,” Sensors and Actuators B: Chemical, Vol. 140, No. 2, 2009, pp. 378-382. doi:10.1016/j.snb.2009.05.008
[9] B. Tudu, A. Jana, A. Metla, D. Ghosh, N. Bhattacharyva and R. Bandyopadhyay, “Electronic Nose for Black Tea Quality Evaluation by an Incremental RBF Network,” Sensors and Actuators B: Chemical, Vol. 138, No. 1, 2009, pp. 90-95. doi:10.1016/j.snb.2009.02.025
[10] H. Zheng and W. Jun, “Electronic Nose and Data Analysis for Detection of Maize Oil Adulteration in Sesame Oil,” Sensors and Actuators B: Chemical, Vol. 119, No. 2, 2006, pp. 449-455.
[11] H. C. Yu, J. Wang and Y. Xu, “Identification of Adulterated Milk Using Electronic Nose,” Sensors and Materials, Vol. 19, No. 5, 2007, pp. 275-285.
[12] N. Bhattacharyya, S. Seth, B. Tudu, P. Tamuly, A. Jana, D. Ghosh, R. Bandyopadhyay, M. Bhuyan and S. Sabhapandit, “Detection of Optimum Fermentation Time for Black tea Manufacturing Using Electronic Nose,” Sensors and Actuators B: Chemical, Vol. 122, No. 2, 2007, pp. 627634.
[13] N. Gutiérrez-Méndez, B. Vallejo-Cordoba, A. F. González-Córdova, G. V. Nevárez-Moorillón and B. RiveraChavira, “Evaluation of Aroma Generation of Lactococcuslactis with an Electronic Nose and Sensory Analysis,” Journal of Dairy Science, Vol. 91, No. 1, 2008, pp. 49-57.
[14] M. Calderon-Santoyo, P. Chalier, D. Chevalier-Lucia, C. Ghommidh, J. A. Ragazzo-Sanchez, “Identification of Saccharomyces cerevisiae Strains for Alcoholic Fermentation by Discriminant Factorial Analysis on Electronic nose Signals,” Electronic Journal of Biotechnology, Vol. 13, No. 4, 2010, pp. 1-12.
[15] H. Haick, M. Hakim, M., Patrascu, Ch. Levenberg, N. Shehada, F. Nakhoul and Z. Abassi, “Sniffing Chronic Renal Failure in Rat Model by an Array of Random Networks of Single-Walled Carbon Nanotubes,” ACS Nano, Vol. 3, No. 5, 2009, pp. 1258-1266. doi:10.1021/nn9001775
[16] T. Bachinger,C. F. Mandenius,G. Striedner, F. Clementschitsch, E. Dürrschmid, M. Cserjan-Puschmann, O. Doblhoff-Dier and K. Bayer, “Non-Invasive Detection of the Metabolic Burden on Recombinant Microorganisms during Fermentation Processes,” Journal of Chemical Technology and Biotechnology, Vol. 76, No. 1, 2001, pp. 885-889.
[17] J. J. Clemente, S. M. S. Monteiro, M. J. T. Carrondo and A. E. Cunha, “Predicting Sporulation Events in a Bioreactor Using an Electronic Nose,” Biotechnology and Bioengineering, Vol. 101, No. 3, 2008, pp. 545-552.
[18] T. Bachinger, U. Riese, R. Eriksson and C. F. Mandenius, “Monitoring Cellular State Transitions in a ProductionScale CHO-Cell Process Using an Electronic Nose,” Journal of Biotechnology, Vol. 76, No. 1, 2000, pp. 61-71. doi:10.1016/S0168-1656(99)00179-0
[19] T. Bachinger, U. Riese, R. Eriksson and C. F. Mandenius, “Gas Sensor Arrays for Early Detection of Infection in Mammalian Cell Culture,” Biosensors and Bioelectronics, Vol. 17, No. 5, 2002, pp. 395-403.
[20] K. Kreij, C. F. Mandenius, J. J. Clemente, A. E. Cunha, S. M. S. Monteiro, M. J. T. Carrondo, F. Hesse, M. Molinas, R. Wagner, O. W. Merten, C. Geny-Katinger, P. Martensson, T. Bachinger and J. Mitrovics, “On-Line Detection of Microbial Contaminations in Animal Cell Reactor Cultures Using an Electronic Nose Device,” Cytotechnology, Vol. 48, No. 1-3, 2005, pp. 41-58. doi:10.1007/s10616-005-3587-4
[21] R. Dutta, E. L. Hines, J. W. Gardner and P. Boilot, “Bacteria Classification Using Cyranose 320 Electronic Nose,” BioMedical Engineering Online, Vol. 1, No. 4, 2002, pp. 1-7. doi:10.1186/1475-925X-1-4
[22] M. Moens, A. Smet, B. Naudts, J. Verhoeven, M. Ieven, P. Jorens, H. J. Geise and F. Blockhuys, “Fast Identification of Ten Clinically Important Microorganisms Using an Electronic Nose,” Letters in Applied Microbiology, Vol. 42, No. 2, 2006, pp. 121-126. doi:10.1111/j.1472-765X.2005.01822.x
[23] J. W. Gardner, M. Craven, C. Dow and E. L. Hines, “The Prediction of Bacteria Type and Culture Growth Phase by an Electronic Nose with a Multi-Layer Perceptron Network,” Measurement Science and Technology, Vol. 9, No. 1, 1998, pp. 120-127. doi:10.1088/0957-0233/9/1/016
[24] H. Liden, T. Bachinger, L.Gorton and C. F. Mandenius, “On-Line Determination of Non-Volatile or Low-Concentration Metabolites in a Yeast Cultivation Using an Electronic Nose,” Analyst, Vol. 125, No. 6, 2000, pp. 1123-1128. doi:10.1039/a909585c
[25] J. Brandgard, I. Sundh, A. Nordberg, A. Schnürer, C. F. Mandenius and B. Mathisen, “Monitoring Growth of the Methanogenic Archaea Methanobacterium formicicum Using an Electronic Nose,” Biotechnology Letters, Vol. 23, No. 4, 2001 pp. 241-248. doi:10.1023/A:1005643606640
[26] V. Agati, J. P. Guyot, J. Morlon-Guyot, P. Talamond and D. J. Hounhouigan, “Isolation and Characterization of New Amylolytic Strains of Lactobacillus fermentum from Fermented Maize Doughs (mawè and ogi) from Benin,” Journal of Applied Microbiology, Vol. 85, No. 1, 1998, pp. 512-520. doi:10.1046/j.1365-2672.1998.853527.x
[27] T. C. Jackson, G. R. Acuff, T. R. Sharp and J. W. Savell, “Volatile Compounds on Sterile Pork Loin Tissue Inoculated with Lactobacillus plantarum and Lactobacillus fermentum,” Journal of Food Science, Vol. 57, No. 1, 1992, pp. 783-784. doi:10.1111/j.1365-2621.1992.tb08098.x
[28] M. Calderon, G. Loiseau and J. P. Guyot, “Nutritional Requirements and Simplified Cultivation Medium to Study Growth and Energetics of a Sourdough Lactic Acid Bacterium Lactobacillus fermentum Ogi E1 during Heterolactic Fermentation of Starch,” Journal of Applied Microbiology, Vol. 90, No. 1, 2001, pp. 508-516. doi:10.1046/j.1365-2672.2001.01272.x
[29] J. C. DeMan, M. Rogosa and M. E. Sharpe, “A Medium for the Cultivation of Lactobacilli,” Journal of Applied Bacteriology, Vol. 23, No. 1, 1960, pp. 130-135. doi:10.1111/j.1365-2672.1960.tb00188.x
[30] J. P. GuyotandMorlon-Guyot, “Effect of Different Cultivation Conditions on Lactobacillus manihotivorans OND32T, an Amylolytic Lactobacillus Isolated from Sour Starch Cassava Fermentation,” International Journal of Food Microbiology, Vol. 67, No. 3, 2001, pp. 217-225.
[31] J. A. Ragazzo-Sánchez, P. Baldet, C. Ghommidh, P. Chalier, A. Deratani, J. C. Boulet, P. Grenier, M. Persin, J. Crouzet, E. Chanié and A. Perrain, “Sampler of Volatile Components,” European Patent No. 02291627.4, 2004.
[32] S. Langourieux and J. Crouzet, “Study of Aroma Compounds-Polysaccharides Interactions by Dynamic Exponential Dilution,” Lebensmittel-Wissenschaft & Technologie, Vol. 27, No. 6, 1994, pp. 544-549.
[33] J. A. Ragazzo-Sánchez, P. Chalier and C. Ghommidh, “Coupling Gas Chromatography and Electronic Nose for Dehydration and Desalcoholization of Alcoholized Beverages: Application to Off-Flavour Detection in Wine,” Sensors and Actuators B: Chemical, Vol. 106, No. 1, 2005, pp. 253-257. doi:10.1016/j.snb.2004.08.006
[34] L. Carmel, N. Sever, D. Lancet and D. Harel, “An Enosealgortithm for Identifying Chemicals and Determining Their Concentration,” Sensors and Actuators B: Chemical, Vol. 93, No. 1-3, 2003, pp. 77-83. doi:10.1016/S0925-4005(03)00246-6
[35] B. P. J. De lacy Costello, R. J. Ewen, J. Guernion and N. Ratcliffe, “Highly Sensitive Mixed Oxide Sensors for the Detection of Ethanol,” Sensors and Actuators B: Chemical, Vol. 873, No. 1, 2002, pp. 207-210.
[36] 2013.
[37] P. Mielle and F. Marquis, “Gas Sensors Errays (‘Electronic Noses’): A Study about the Speed/Accuracy Ratio,” Sensors and Actuators B: Chemical, Vol. 68, No. 3 2000, pp. 9-16.
[38] S. A. Miettinen, H. Tuorila, V. Piironen, K. Vehkalahti and L. Hyvonen, “Effect of Emulsion Characteristics on Release of Aroma as Detected Sensory Evaluation, Static Headspace Gas Chromatography and Electronic Nose,” Journal of Agricultural and Food Chemistry, Vol. 50, No. 15, 2002, pp. 4232-4239. doi:10.1021/jf0107205
[39] A. Branca, P. Simonian, M. Ferrante, E. Novas and M. R. Negri, “Electronic Nose Based Discrimination of a Perfumery Compound in a Fragrance,” Sensors and Actuators B: Chemical, Vol. 92, No. 1-2, 2003, pp. 222-227. doi:10.1016/S0925-4005(03)00270-3
[40] J. A. Ragazzo-Sanchez, P. Chalier, D. Chevalier-Lucia and C. Ghommidh, “Electronic Nose Discrimination of Aroma Compounds in Alcoholised Solutions,” Sensors and Actuators B: Chemical, Vol. 114, No. 2, 2006, pp. 665-673. doi:10.1016/j.snb.2005.05.032

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.