A Robust and Economical Underwater Stereo Video System to Observe Antarctic Krill (Euphausia superba)

DOI: 10.4236/ojms.2013.33016   PDF   HTML   XML   4,031 Downloads   7,186 Views   Citations


In situ characterization of krill morphometry, behaviour and orientation is not yet routinely feasible, yet is critical to understanding swarm characteristics. A first step is to measure individual and aggregation behaviour. We report on successful use of a robust, low-cost underwater stereo video camera system to observe live Antarctic krill (Euphausia superba) in aquaria. The application of photogrammetry techniques allows animal length, orientation and three-dimensional position to be calculated from stereo video camera observations. Initially, we tested the efficacy of the stereo system by observing synthetic targets of known length and orientation to obtain estimates of measurement error. We found that on average the stereo camera system underestimated length by 0.6 mm and vertical tilt angle by +0.34°(head up), but that photogrammetric measurements of 100 randomly selected krill lengths were not significantly different from measurements of 100 randomly caught krill measured physically. During our investigation, we analysed three krill behavioural metrics: swimming speed, tortuosity, and vertical orientation under three behavioural states (undisturbed, feeding, and escape). We found that swim speed and tortuosity significantly increased when animals were feeding or exhibiting an escape response, but vertical orientation was not significantly different across states. Our investigation demonstrates that low-cost stereo video cameras can produce precise measurements that can be used for monitoring krill behaviour and population structure.

Share and Cite:

T. Letessier, S. Kawaguchi, R. King, J. Meeuwig, R. Harcourt and M. Cox, "A Robust and Economical Underwater Stereo Video System to Observe Antarctic Krill (Euphausia superba)," Open Journal of Marine Science, Vol. 3 No. 3, 2013, pp. 148-153. doi: 10.4236/ojms.2013.33016.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. M. Bailey, N. J. King and I. G. Priede, “Cameras and Carcasses: Historical and Current Methods for Using Ar tificial Food Falls to Study Deep-Water Animals,” Ma rine Ecology Progress Series, Vol. 350, 2007, pp. 179 191. doi:10.3354/meps07187
[2] T. B. Letessier, J. J. Meeuwig, K. Kemp, L. Groves, P. Bouchet, L. Chapuis, G. M. S. Vianna, M. Gollock and H. Koldewey, “Assessing Pelagic Fish Populations: The Ap plication of Demersal Video Techniques to the Mid-Water Environment,” Methods in Oceanography, in Press.
[3] D. L. Watson, M. J. Anderson, G. A. Kendrick, K. Nardi and E. S. Harvey, “Effects of Protection from Fishing on the Lengths of Targeted and Non-Targeted Fish Species at the Houtman Abrolhos Islands, Western Australia,” Marine Ecology Progress Series, Vol. 384, 2009, pp. 241-249. doi:10.3354/meps08009
[4] S. Kawaguchi, R. King, R. Meijers, J. E. Osborn, K. M. Swadling, D. A. Ritz and S. Nicol, “An Experimental Aqua rium for Observing the Schooling Behaviour of Antarctic Krill (Euphausia superba),” Deep Sea Research Part II: Topical Studies in Oceanography, Vol. 57, No. 7-8, 2010, pp. 683-692. doi:10.1016/j.dsr2.2009.10.017
[5] W. F. Dolphin, “Prey Densities and Foraging of Hump back Whales, Megaptera novaeangliae,” Experientia, Vol. 43, No. 4, 1987, pp. 1-4. doi:10.1007/BF01940459
[6] W. M. Hamner and P. P. Hamner, “Behavior of Antarctic Krill (Euphausia superba): Schooling, Foraging, and An tipredatory Behavior,” Canadian Journal of Fisheries and Aquatic Sciences, Vol. 57, No. 3, 2000, pp. 192-202. doi:10.1139/f00-195
[7] M. Cox, J. Waaren, D. Demer, G. Gutter and A. S. Brier ley, “Three-Dimensional Observations of Swarms of Ant arctic Krill (Euphausia superba) Made Using a Multi Beam Echosounder,” Deep Sea Research Part II: Topical Studies in Oceanography, Vol. 57, No. 7, 2010, pp. 508-518. doi:10.1016/j.dsr2.2009.10.003
[8] S. Kawaguchi, R. Kilpatrick, L. Roberts, R. A. King and S. Nicol, “Ocean-Bottom Krill Sex,” Journal of Plankton Research, Vol. 33, No. 7, 2011, pp. 1134-1138. doi:10.1093/plankt/fbr006
[9] K. Schmidt, A. Atkinson, S. Steigenberger, S. Fielding, M. C. M. Lindsay, D. W. Pond, G. A. Tarling, T. A. Kle vjer, C. S. Allen, S. Nicol and E. P. Achterberg, “Seabed Foraging by Antarctic Krill: Implications for Stock As sessment, Bentho-Pelagic Coupling, and the Vertical Trans fer of Iron,” Limnology and Oceanography, Vol. 56, No. 4, 2011, pp. 1411-1428. doi:10.4319/lo.2011.56.4.1411
[10] R. P. Hewitt and D. Demer, “Krill Abundance,” Nature, Vol. 353, 1991, p. 310. doi:10.1038/353310b0
[11] L. Calise and G. Skaret, “Sensitivity Investigation of the SDWBA Antarctic Krill Target Strength Model to Fat ness, Material Contrasts and Orientation,” CCAMLR Sci ence, Vol. 18, 2011, pp. 97-122.
[12] T. Jarvis, N. Kelly, S. Kawaguchi, E. van Wijk and S. Nicol, “Acoustic Characterisation of the Broad-Scale Dis tribution and Abundance of Antarctic Krill (Euphausia superba) off East Antarctica (30-80 degrees E) in January-March 2006,” Deep Sea Research Part II: Topical Studies in Oceanography, Vol. 57, No. 9, 2010, pp. 916 933. doi:10.1016/j.dsr2.2008.06.013
[13] D. A. Demer and S. G. Conti, “New Target-Strength Mo del Indicates more Krill in the Southern Ocean,” ICES Journal of Marine Science, Vol. 62, No. 1, 2005, pp. 25 32. doi:10.1016/j.icesjms.2004.07.027
[14] ASAM, “CCAMLR SG-ASAM-10: Fifth Meeting of the Subgroup on Acoustic Survey and Analysis Methods, Cambridge, UK,” ASAM, Cambridge, 2010.
[15] G. L. Lawson, P. Wiebe, C. J. Ashjian, D. Z. Chu and T. K. Stanton, “Improved Parameterization of Antarctic Krill Target Strength Models,” Journal of the Acoustical Soci ety of America, Vol. 119, No. 1, 2006, pp. 232-242. doi:10.1121/1.2141229
[16] E. S. Harvey and M. Shortis, “A System for Stereo-Video Measurement of Sub-Tidal Organisms,” Marine Techno logy Society Journal, Vol. 29, 1996, pp. 10-22.
[17] E. S. Harvey and M. Shortis, “Calibration Stability of an Underwater Stereo-Video System: Implications for Meas urement Accuracy and Precision,” Marine Technology Society Journal, Vol. 329, No. 329, 1998, pp. 3-17.
[18] SeaGIS, “PhotoMeasure. SeaGIS Pty, Bacchus Marsh,” 2008. www.seagis.com.au
[19] S. Rao Jammalamadaka and A. Sengupta, “Topics in Cir cular Statistics, Section 2.2.7,” World Scientific Press, Singapore, 2001
[20] C. Agostinelli and U. Lund, “R Package ‘Circular’: Cir cular Statistic (Version 0.4-3),” 2011. http://r-forge r-project org/projects/circular
[21] R. C. Team, “R: A Language and Environment for Statis tical Computing,” R Foundation for Statistical Computing, Vienna. http://www.R-project.org
[22] D. J. Morris, J. L. Watkins, C. Ricketts, F. Buchholz and J. Priddle, “An Assessment of the Merits of Length and Weight Measurements of Antarctic Krill Euphausia su perba,” British Antarctic Survey Bulletin, No. 79, 1988, pp. 27-50.
[23] S. Nicol, J. Kitchener, R. King, G. Hosie and W. Dela mare, “Population Structure and Condition of Antarctic Krill (Euphausia superba) off East Antarctica (80 150?E) during the Austral Summer of 1995/1996,” Deep Sea Research Part II: Topical Studies in Oceanography, Vol. 47, No. 12, 2000, pp. 2489-2517. doi:10.1016/S0967-0645(00)00033-3

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.