Recent Advances of Modern Protocol for C-C Bonds—The Suzuki Cross-Coupling


Over the past 20 years, small molecule solid phase synthesis has become a powerful tool in the discovery of novel molecular materials. In the development of organic chemistry, the carbon-carbon bond formation has always been one of the most useful and fundamental reaction. The current review summarizes recent developments in metal-catalyzed coupling reactions. The following method is discussed in detail—the cross-coupling of aryl halides with aryl boronic acids (the Suzuki coupling), and the others C-C bond formation reactions as the palladium-catalyzed reaction between an aryl and (or) alkyl halide and a vinyl functionality (the Heck reaction); and the palladium-catalyzed cross-coupling reaction of organostannyl reagents with a variety of organic electrophiles (the Stille reaction)—are mentioned.

Share and Cite:

J. Sołoducho, K. Olech, A. Świst, D. Zając and J. Cabaj, "Recent Advances of Modern Protocol for C-C Bonds—The Suzuki Cross-Coupling," Advances in Chemical Engineering and Science, Vol. 3 No. 3A, 2013, pp. 19-32. doi: 10.4236/aces.2013.33A1003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. Franzen, “The Suzuki, the Heck, and the Stille Reaction/Three Versatile Methods for the Introduction of New C-C Bonds on Solid Support,” Canadian Journal of Chemistry, Vol. 78, No. 7, 2000, pp. 957-962. doi:10.1139/v00-089
[2] J. M. Davidson and C. J. Triggs, “Reaction of Metal Ion Complexes with Hydrocarbons. I. Palladation and Some Other New Electrophilic Substitution Reactions. Preparation of Palladium(I),” Journal of the Chemical Society A: Inorganic, Physical, Theoretical, Vol. 6, 1968, pp. 1324-1331. doi:10.1039/j19680001324
[3] K. Garves, “Coupling, Carbonylation, and Vinylation Reactions of Aromatic Sulfinic Acids via Organopalladium Intermediates,” The Journal of Organic Chemistry, Vol. 35, No. 10, 1970, pp. 3273-3275. doi:10.1021/jo00835a021
[4] N. Miyaura and A. Suzuki, “Stereoselective Synthesis of Arylated (E)-Alkenes by the Reaction of Alk-1-enylboranes with Aryl Halides in the Presence of Palladium Catalyst,” Journal of the Chemical Society, Chemical Communications, Vol. 19, 1979, pp. 866-867. doi:10.1039/c39790000866
[5] A. Nowakowska-Oleksy, J. Soloducho and J. Cabaj, “Phenoxazine Based Units—Synthesis, Photophysics and Electrochemistry,” Journal of Fluorescence, Vol. 21, No. 1, 2011, pp. 169-178. doi:10.1007/s10895-010-0701-6
[6] J. Soloducho, J. Cabaj, K. Idzik, A. Nowakowska-Oleksy, A. Swist and M. Lapkowski, “Synthesis, Structure and Properties of Crowded Symmetric Arylenes,” Current Organic Chemistry, Vol. 14, No. 12, 2010, pp. 1234-1244. doi:10.2174/138527210791330468
[7] N. Miyaura, K. Yamada and A. Suzuki, “A New Stereospecific Cross-Coupling by the Palladium-Catalyzed Reaction of 1-Alkenylboranes with 1-Alkenyl or 1-Alkynyl Halides,” Tetrahedron Letters, Vol. 20, No. 36, 1979, pp. 3437-3440. doi:10.1016/S0040-4039(01)95429-2
[8] N. Miyaura and A. Suzuki, “Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds,” Chemical Reviews, Vol. 95, No. 7, 1995, pp. 2457-2483. doi:10.1021/cr00039a007
[9] G. Altenhoff, R. Goddard, C. W. Lehmann and F. Glorius, “A N-Heterocyclic Carbene Ligand with Flexible Steric Bulk Allows Suzuki Cross-Coupling of Sterically Hindered Aryl Chlorides at Room Temperature,” Angewandte Chemie International Edition, Vol. 42, No. 31, 2003, pp. 3690-3693. doi:10.1002/anie.200351325
[10] W. A. Herrmann, K. Fele, S. K. Schneider, E. Herdtweck and S. D. Hoffmann, “A Carbocyclic Carbene as an Efficient Catalyst Ligand for C-C Coupling Reactions,” Angewandte Chemie International Edition, Vol. 45, No. 23, 2006, pp. 3859-3862. doi:10.1002/anie.200503589
[11] W. J. Tang, A. G. Capacci, X. D. Wei, W. J. Li, A. White, N. D. Patel, J. Savoie, J. J. Gao, S. Rodriguez, B. Qu, N. Haddad, B. Z. Lu, D. Krishnamurthy, N. K. Yee and C. H. Senanayake, “A General and Special Catalyst for Suzuki-Miyaura Coupling Processes,” Angewandte Chemie, Vol. 122, No. 34, 2010, pp. 6015-6019.
[12] D. H. Lee and M. J. Jin, “An Extremely Active and General Catalyst for Suzuki Coupling Reaction of Unreactive Aryl Chlorides” Organic Letters, Vol. 13, No. 2, 2011, pp. 252-255. doi:10.1021/ol102677r
[13] M. Thimmaiah and S. Fang, “Efficient Palladium-Catalyzed Suzuki-Miyaura Coupling of Aryl Chlorides with Arylboronic Acids Using Benzoferrocenyl Phosphines as Supporting Ligands,” Tetrahedron, Vol. 63, No. 29, 2007, pp. 6879-6886. doi:10.1016/j.tet.2007.04.057
[14] Y. Uozumi, Y. Matsuura, T. Arakawa and Y. M. A. Yamada, “Asymmetric Suzuki-Miyaura Coupling in Water with a Chiral Palladium Catalyst Supported on an Amphiphilic Resin” Angewandte Chemie International Edition, Vol. 48, No. 15, 2009, pp. 2708-2710. doi:10.1002/anie.200900469
[15] D. J. M. Snelders, G. van Koten and R. Gebbink, “Hexacationic Dendriphos Ligands in the Pd-Catalyzed Suzuki-Miyaura Cross-Coupling Reaction: Scope and Mechanistic Studies,” Journal of the American Chemical Society, Vol. 131, No. 32, 2009, pp. 11407-11416. doi:10.1021/ja904042h
[16] L. Yin and J. Liebscher, “Carbon-Carbon Coupling Reactions Catalyzed by Heterogeneous Palladium Catalysts,” Chemical Reviews, Vol. 107, No. 1, 2006, pp. 133-173. doi:10.1021/cr0505674
[17] M. Lysen and K. Kohler, “Suzuki-Miyaura Cross-Coupling of Aryl Chlorides in Water Using Ligandless Palladium on Activated Carbon,” Synlett, Vol. 11, 2005, pp. 1671-1674. doi:10.1055/s-2005-869877
[18] M. Lysen and K. Kohler, “Palladium on Activated Carbon—A Recyclable Catalyst for Suzuki-Miyaura Cross-Coupling of Aryl Chlorides in Water,” Synthesis, Vol. 4, 2006, pp. 692-698. doi:10.1055/s-2006-926305
[19] N. Gürbüz, I. Ozdemir, T. Seckin, B. Cetinkaya, “Surface Modification of Inorganic Oxide Particles with a Carbene Complex of Palladium: A Recyclable Catalyst for the Suzuki Reaction,” Journal of Inorganic and Organometallic Polymers, Vol. 14, 2No. 2, 004, pp.149-159. doi:10.1023/
[20] J. Han, Y. Liu and R. Guo, “Facile Synthesis of Highly Stable Gold Nanoparticles and Their Unexpected Excellent Catalytic Activity for Suzuki-Miyaura Cross-Coupling Reaction in Water,” Journal of the American Chemical Society, Vol. 131, No. 6, 2009, pp. 2060-2061. doi:10.1021/ja808935n
[21] B. Z. Yuan, Y. Y. Pan, Y. W. Li, B. L. Yin and H. F. Jiang, “A Highly Active Heterogeneous Palladium Catalyst for the Suzuki-Miyaura and Ullmann Coupling Reactions of Aryl Chlorides in Aqueous Media,” Angewandte Chemie International Edition, Vol. 49, No. 24, 2010, pp. 4054-4058. doi:10.1002/anie.201000576
[22] M. J. Jin and D. H. Lee, “A practical Heterogeneous Catalyst for the Suzuki, Sonogashira, and Stille Coupling Reactions of Unreactive Aryl Chlorides,” Angewandte Chemie International Edition, Vol. 49, No. 6, 2010, pp. 1119-1122. doi:10.1002/anie.200905626
[23] B. Li, Z. Guan, W. Wang, X. Yang, J. Hu, B. Tan and T. Li, “Highly Dispersed pd Catalyst Locked in Knitting Aryl Network Polymers for Suzuki-Miyaura Coupling Reactions of Aryl Chlorides in Aqueous Media,” Advanced Materials, Vol. 24, 2No. 25, 012, pp. 3390-3395. doi:10.1002/adma.201200804
[24] A. Nowakowska-Oleksy, J. Cabaj, K. Olech and J. So?oducho, “Comparative Study of Alternating Low-Band-Gap Benzothiadiazole Co-Oligomers,” Journal of Fluorescence, Vol. 21, No. 4, 2011, pp. 1625-1633. doi:10.1007/s10895-011-0851-1
[25] A. ?wist, J. So?oducho, P. Data and M. ?apkowski, “Thianthrene-Based Oligomers as Hole Transporting Materials,” ARKIVOC, Vol. 2012, No. 3, 2012, pp. 193-209. doi:10.3998/ark.5550190.0013.315
[26] M. Sailer, R. A. Gropeanu and T. J. Müller, “Practical Synthesis of Iodo Phenothiazines. A Facile Access to Electrophore Building Blocks,” The Journal of Organic Chemistry, Vol. 68, No. 19, 2003, pp. 7509-7512. doi:10.1021/jo034555z
[27] P. Herguth, X. Jiang, M. S. Liu and A. K. Y. Jen, “Highly Efficient Fluorene-and Benzothiadiazole-Based Conjugated Copolymers for Polymer Light-Emitting Diodes,” Macromolecules, Vol. 35, No. 16, 2002, pp. 6094-6100. doi:10.1021/ma020405z
[28] Y. Zhu, R. D. Champion and S. A. Jenekhe, “Conjugated Donor-Acceptor Copolymer Semiconductors with Larg Intramolecular Charge Transfer: Synthesis, Optical Properties, Electrochemistry, and Field Effect Carrier Mobility of Thienopyrazine Based Copolymers,” Macromolecules, Vol. 39, No. 25, 2006, pp. 8712-8719. doi:10.1021/ma061861g
[29] N. Miyaura and A. Suzuki, “Stereoselective Synthesis of Arylated (E)-Alkenes by the Reaction of Alk-1-Enylboranes with Aryl Halides in the Presence of Palladium Catalyst,” Journal of the Chemical Society, Chemical Communications, Vol. 19, 1979, pp. 866-867. doi:10.1039/c39790000866
[30] R. F. Heck, “Palladium-Catalysed Vinylation of Organic Halides,” Organic Reactions, Vol. 27, 1982, pp. 345-390.
[31] T. Hayashi and M. Kumada, “Asymmetric Synthesis Catalyzed by Transition-Metal Complexes with Functionalized Chiral Ferrocenylphosphine Ligands,” Accounts of Chemical Research, Vol. 15, No. 12, 1982, pp. 395-401. doi:10.1021/ar00084a003
[32] J. W. Labadie, D. Tueting and S. K. Stille, “Synthetic Utility of the Palladium-Catalyzed Coupling Reaction of Acid Chlorides with Organotins,” The Journal of Organic Chemistry, Vol. 48, No. 24, 1983, pp. 4634-4642. doi:10.1021/jo00172a038
[33] E. Negishi, “Palladium-or Nickel-Catalyzed cross Coupling. A New Selective Method for Carbon-Carbon Bond Formation,” Accounts of Chemical Research, Vol. 15, No. 11, 1982, pp. 340-348. doi:10.1021/ar00083a001
[34] K. Sonogashira, “Development of Pd-Cu Catalyzed Cross-Coupling of Terminal Acetylenes with sp2-Carbon Halides,” Journal of Organometallic Chemistry, Vol. 653, No. 1-2, 2002, pp. 46-49. doi:10.1016/S0022-328X(02)01158-0
[35] J. Tsuji, “Transition metal reagents and catalysts: Innovations in organic synthesis,” John Wiley and Sons, New York, 2002. doi:10.1002/0470854766M. F. Lipton, M. A. Mauragis, M. T. Maloney, M. F. Veley, D. W. Vander-Bor, J. J. Newby, R. B. Appell and E. D. Daugs, “The Synthesis of OSU 6162: Efficient, Large-Scale Implementation of a Suzuki Coupling,” Organic Process Research and Development, Vol. 7, No. 3, 2003, pp. 385-392. doi:10.1021/op025620u
[36] M. Beller and A. Zapf, “Handbook of Organopalladium Chemistry for Organic Synthesis,” Wiley, Hoboken, 2002.
[37] D. S. Ennis, J. McManus, W. Wood-Kaczmar, J. Richardson, G. E. Smith and A. Carstairs, “Multikilogram-Scale Synthesis at a Biphenyl Carboxylic Acid Derivative Using a Pd/C-Mediated Suzuki Coupling Approach,” Organic Process Research and Development, Vol. 3, No. 4, 1999, pp. 248-252. doi:10.1021/op980079g
[38] Y. Mori, M. Nakamura, T. Wakabayashi, K. Mori and S. Kobayashi, “Efficient Total Synthesis of Khafrefungin: Convergent Approach Using Suzuki Coupling under Thallium-Free Conditions toward Multigram-Scale Synthesis,” Synlett, Vol. 4, 2002, pp. 601-603. doi:10.1055/s-2002-22726
[39] R. Franzén and Y. Xu, “Review on Green Chemistry —Suzuki Cross-Coupling in Aqueous Media,” Canadian Journal of Chemistry, Vol. 83, No. 3, 2005, pp. 266-272. doi:10.1139/v05-048
[40] A. Herrmann and C. W. Kohlpaintner, “Water-Soluble Ligands, Metal Complexes, and Catalysts: Synergism of Homogeneous and Heterogeneous Catalysis,” Angewandte Chemie International Edition in English, Vol. 32, No. 11, 1993, pp. 1524-1544. doi:10.1002/anie.199315241
[41] U. M. Lindstrom, “Stereoselective Organic Reactions in Water,” Chemical Reviews, Vol. 102, No. 8, 2002, pp. 2751-2772.
[42] M. Bellar, J. G. E. Krauter and A. Zapf, “Kohlenhydrat-substituierte Triarylphosphane-Eine Neue Ligandenklasse für die Zweiphasen-Katalyse,” Angewandte Chemie International Edition in English, Vol. 36, No. , 1997, pp. 772-774.
[43] J. Zhang and C.-G. Xia, “Kinetic Study of Dichlorocyclopropanation of 4-Vinyl-1-cyclohexene by a Novel Multisite Phase Transfer Catalyst,” Journal of Molecular Catalysis A: Chemical, Vol. 206, No. 1-2, 2003, pp. 59-68.
[44] T. Vincent and E. Guibal, “Chitosan-Supported Palladium Catalyst. Synthesis Procedure,” Industrial and Engineering Chemistry Research, Vol. 41, No. 21, 2002, pp. 5158-5164. doi:10.1021/ie0201462
[45] F. Quignard, A. Choplin and A. Damard, “Chitosan: A Natural Polymeric Support of Catalysts for the Synthesis of Fine Chemicals,” Langmuir, Vol. 16, No. 24, 2000, pp. 9106-9108. doi:10.1021/la000937d
[46] M.-A. Yin, G.-L. Yuan, Y.-Q. Wu, M.-Y. Huang and Y.-Y. Jiang, “Asymmetric Hydrogenation of Ketones Catalyzed by a Silica-Supported Chitosan-Palladium Complex,” Journal of Molecular Catalysis A: Chemical, Vol. 147, No. 1-2, 1999, pp. 93-98. doi:10.1016/S1381-1169(99)00133-8
[47] J. J. E. Hardy, S. Hubert, D. C. Macquarrie and A. J. Wilson, “Chitosan-Based Palladium Catalysts in the Heck and Suzuki Reactions,” Green Chemistry, Vol. 6, 2004, p. 53. doi:10.1039/b312145n
[48] H. Sakurai, T. Tsukuda and T. Hirao, “Pd/C as a Reusable Catalyst for the Coupling Reaction of Halophenols and Arylboronic Acids in Aqueous Media,” Journal of Organic Chemistry, Vol. 67, No. 8, 2002, pp. 2721-2722. doi:10.1021/jo016342k
[49] M. T. Reetz and E. Westermann, “Phosphanfreie Palladium-katalysierte Kupplungen: Die Entscheidende Rolle von Pd-Nanoteilchen,” Angewandte Chemie, Vol. 112, No. 1, 2000, pp. 170-173. doi:10.1002/(SICI)1521-3757(20000103)112:1<170::AID-ANGE170>3.0.CO;2-A
[50] G. W. Kabalka, V. Namboodiri and L. Wang, “Suzuki Coupling with Ligandless Palladium and Potassium Fluoride,” Chemical Communications, Vol. 8, 2001, p. 775. doi:10.1039/b101470f
[51] T. N. Glasnov, S. Findening and C. O. Kappe, “Heterogeneous versus Homogeneous Palladium Catalysts for Ligandless Mizoroki-Heck Reactions: A Comparison of Batch/Microwave and Continuous-Flow Processing,” Chemistry—A European Journal, Vol. 15, No. 4, 2009, pp. 1001-1010. doi:10.1002/chem.200802200
[52] G. Lu, R. Franzen, Q. Zhang and Y. Xu, “Palladium Charcoal-Catalyzed, Ligandless Suzuki Reaction by Using Tetraarylborates in Water,” Tetrahedron Letters, Vol. 46, No. 24, 2005, pp. 4255-4259. doi:10.1016/j.tetlet.2005.04.022
[53] G. Fan, B. Zou, S. Cheng and L. Zheng, “Ligandless Palladium Supported on SiO2-TiO2 as Effective Catalyst for Suzuki Reaction,” Journal of Industrial and Engineering Chemistry, Vol. 16, No. 2, 2010, pp. 220-223. doi:10.1016/j.jiec.2009.08.009
[54] S. P. Stanforth, “Catalytic Cross-Coupling Reactions in Biaryl Synthesis,” Tetrahedron, Vol. 54, No. 3-4, 1998, pp. 263-303. doi:10.1016/S0040-4020(97)10233-2
[55] F. Ullmann, “Ueber eine neue Darstellungsweise von Phenylathersalicylsaure,” Berichte der Deutschen Chemischen Gesellschaft, Vol. 37, No. 1, 1904, pp. 853-854.
[56] J. J. Li and G. W. Gribble, “Palladium in Heterocyclic Chemistry,” Pergamon, New York, 2000.
[57] C. N. Johnson, G. Stemp, N. Anand, S. C. Stephen and T. Gallagher, “Palladium(0)-catalysed Arylations Using Pyrrole and Indole-2-boronic Acids,” Synlett, No. 9, 1998, pp. 1025-1027. doi:10.1055/s-1998-1834
[58] R. J. Sundberg, “Indoles,” Academic Press, London, 1996.
[59] A. Zoltewicz and M. P. Cruskie Jr., “Strategies for the Synthesis of Unsymmetrical Quaterpyridines Using Palladium-Catalyzed Cross-Coupling Reactions,” Tetrahedron, Vol. 51, No. 42, 1995, pp. 11393-11400. doi:10.1016/0040-4020(95)00699-9
[60] J. Li and W. S. Yue, “Synthesis of 3-Aryl and 3-Heterocyclic Quinoxalin-2-ylamines via Pd-Catalyzed Cross-Coupling Reactions,” Tetrahedron Letters, Vol. 40, No. 24, 1999, pp. 4507-4510. doi:10.1016/S0040-4039(99)00822-9
[61] T. Soos, G. Timari and G. Hajos, “A New and Concise Synthesis of Furostifoline,” Tetrahedron Letters, Vol. 40, No. 49, 1999, pp. 8607-8609. doi:10.1016/S0040-4039(99)01803-1
[62] S. L. Hargreaves, B. L. Pilkington, S. E. Russell and P. A. Worthington, “The Synthesis of Substituted Pyridylpyrimidine Fungicides Using Palladium-Catalysed Cross-Coupling Reactions,” Tetrahedron Letters, Vol. 41, No. 10, 2000, pp. 1653-1656. doi:10.1016/S0040-4039(00)00007-1
[63] D. Wang and J. Haseltine, “A Comparison of Phenylboronic Acid and Phenyltrimethyltin in the Palladium-Catalyzed Arylation of 1,5-Dialkylimidazoles,” Journal of Heterocyclic Chemistry, Vol. 31, No. 6, 1994, pp. 1637-1639. doi:10.1002/jhet.5570310660
[64] D. Peters, A.-B. Hornfeldt and S. Gronovitz, “Synthesis of Various 5-Substituted Uracils,” Journal of Heterocyclic Chemistry, Vol. 27, No. 7, 1990, pp. 2165-2173. doi:10.1002/jhet.5570270756
[65] R. Franzén and J. Tois, “Purine and Sugar Chemistry on Solid Phase—100 Years after the Emil Fischer’s Chemistry Nobel Prize 1902,” Combinatorial Chemistry & High Throughput Screening, Vol. 6, No. 5, 2003, pp. 433-434. doi:10.2174/138620703106298617
[66] T. I. Wallow and B. M. Novak, “In Aqua Synthesis of Water-Soluble Poly(para-phenylene) Derivatives,” Journal of the American Chemical Society, Vol. 113, No. 19, 1991, pp. 7411-7412. doi:10.1021/ja00019a042
[67] N. G. Andersen, S. P. Maddaford and B. A. Keay, “A Modified in Situ Suzuki Cross-Coupling of Haloarenes for the Preparation of C2 Symmetric Biaryls,” Journal of Organic Chemistry, Vol. 61, No. 26, 1996, pp. 9556-9559. doi:10.1021/jo9617880
[68] J. Yin and S. L. Buchwald, “A Catalytic Asymmetric Suzuki Coupling for the Synthesis of Axially Chiral Biaryl Compounds,” Journal of the American Chemical Society, Vol. 122, No. 48, 2000, pp. 12051-12052. doi:10.1021/ja005622z
[69] A. N. Cammidge and K. V. L. Crepy, “The First Asymmetric Suzuki Reaction,” Chemical Communications, Vol. 18, 2000, pp. 1723-1724. doi:10.1039/b004513f
[70] A.-S. Castanet, F. Colobert, P.-E. Broutin and M. Obringer, “Asymmetric Suzuki Cross-Coupling Reaction: Chirality Reversal Depending on the Palladium-Chiral Phosphine Ratio,” Tetrahedron: Asymmetry, Vol. 13, No. 6, 2002, pp. 659-665. doi:10.1016/S0957-4166(02)00169-6
[71] A. Herrbach, A. Marinetti, O. Baudoin, D. Guenard and F. Gueritte, “Asymmetric Synthesis of an Axially Chiral Antimitotic Biaryl via an Atropo-Enantioselective Suzuki Cross-Coupling,” Journal of Organic Chemistry, Vol. 68, No. 12, 2003, pp. 4897-4905. doi:10.1021/jo034298y
[72] M. Sevignon, J. Hassan, C. Gozzi, E. Schulz and M. Lemaire, “A New Green Catalytic Method for Biaryl Cross-Coupling and Oligothiophene Synthesis,” Comptes Rendus de l’Académie des Sciences-Series IIC-Chemistry, Vol. 3, No. 7, 2000, pp. 569-572.
[73] I. Osaka and R. D. McCullough, “Advances in Molecular Design and Synthesis of Regioregular Polythiophenes,” Accounts of Chemical Research, Vol. 41, No. 9, 2008, pp. 1202-1214. doi:10.1021/ar800130s
[74] G. Saini, N. T. Lucas and J. Jacob, “Tetrathiophenes with Thiophene Side Chains: Effect of Substitution on Packing and Conjugation,” Tetrahedron Letters, Vol. 51, No. 22, 2010, pp. 2956-2958. doi:10.1016/j.tetlet.2010.03.087
[75] N. Metri, X. Sallenave, L. Beouch, C. Plesse, F. Goubard and C. Chevrot, “New Star-Shaped Molecules Derived from Thieno[3,2-b]thiophene Unit and Triphenylamine,” Tetrahedron Letters, Vol. 51, No. 50, 2010, pp. 6673-6676. doi:10.1016/j.tetlet.2010.10.082
[76] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. dos Santos, M. Logdlund and W. R. Salaneck, “Electroluminescence in Conjugated Polymers,” Nature, Vol. 397, 1999, pp. 121-128. doi:10.1038/16393
[77] D. Fichou, “Handbook of Oligo- and Polythiophene,” Wiley-VCH, Weinheim, 1998. doi:10.1002/9783527611713
[78] Z. Bao, A. Lovinger and J. Brown, “New Air-Stable n-Channel Organic Thin Film Transistors,” Journal of the American Chemistry Society, Vol. 120, No. 1, 1998, pp. 207-208. doi:10.1021/ja9727629
[79] D. B. A. Rep, R. Roelfsema, J. H. van Esch, F. S. Schoonbeek, R. M. Kellogg, B. L. Feringa, T. T. M. Palstra and T. M. Klapwijk, “Self-Assembly of Low-Dimensional Arrays of Thiophene Oligomers from Solution on Solid Substrates,” Advanced Materials, Vol. 12, No. 8, 2000, pp. 563-566. doi:10.1002/(SICI)1521-4095(200004)12:8<563::AID-ADMA563>3.0.CO;2-7
[80] F. Garnier, A. Yasser, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Servet, S. Ries and P. Alnot, “Molecular Engineering of Organic Semiconductors: Design of Self-Assembly Properties in Conjugated Thiophene Oligomers,” Journal of the American Chemistry Society, Vol. 115, No. 19, 1993, pp. 8716-8721. doi:10.1021/ja00072a026
[81] R. D. McCullough, R. D. Lowe, M. Jayaraman, P. C. Ewbank, D. L. Anderson and S. Tristram-Nagle, “Novel Coordination Complexes of Tetrathiafulvalene Derivatives,” Synthetic Metals, Vol. 55, No. 1, 1993, pp. 1198-1203.
[82] K. Faid, R. Cloutier and M. Leclerc, “Design of Novel Electroactive Polybithiophene Derivatives,” Macromolecules, Vol. 26, No. 10, 1993, pp. 2501-2507. doi:10.1021/ma00062a017
[83] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig and D. M. De Leeuw, “Two-Dimensional Charge Transport in Self-Organized, High-Mobility Conjugated Polymers,” Nature, Vol. 401, 1999, pp. 685-688. doi:10.1038/44359
[84] Y. Zheng, H. Zhou, D. Liu, G. Floudas, M. Wagner, K. Koynov, M. Mezger, H. J. Butt and T. Ikeda, “Supramolecular Thiophene Nanosheets,” Angewandte Chemie International Edition, Vol. 52, No. 18, 2013, pp. 4845-4848. doi:10.1002/anie.201210090

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.