Plant Ionomics: A Platform for Identifying Novel Gene Regulating Plant Mineral Nutrition

DOI: 10.4236/ajps.2013.47162   PDF   HTML   XML   4,650 Downloads   7,416 Views   Citations

Abstract

In the present era of genomics, ionomics is one of the major pillars for the structural and functional genomic study. The complete set of ions present in an organism is referred to as the ionome of the organism. Hence, the ionomics is defined as the, “study of quantitative complement of low molecular weight molecules present in cells in a particular physiological and developmental state of the plant” [1]. The complete ionomic profiling of the plants are done by using a number of analytical tools like ICP-MS, ICP-OES, X-Ray crystallography, Neutron Activation Analysis (NAA) etc. All these analytical tools gave complete profile of the ions present in the plants. These data are stored in a database called PiiMS (Purdue Ionomics Information Management System) [2]. The huge data available in the database helps in the forward and reverse genetic approach for studying the structural and functional genomics of the particular organism. This review describes the role of the ionomic study in crop plants like arabidopsis, rice and maize.

Share and Cite:

K. Satismruti, N. Senthil, S. Vellaikumar, R. Ranjani and M. Raveendran, "Plant Ionomics: A Platform for Identifying Novel Gene Regulating Plant Mineral Nutrition," American Journal of Plant Sciences, Vol. 4 No. 7, 2013, pp. 1309-1315. doi: 10.4236/ajps.2013.47162.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. Salt, I. Baxter and B. Lahner, “Ionomics and the Study of the Plant Ionome,” Annual Review of Plant Biology, Vol. 59, 2008, pp. 709-733. doi:10.1146/annurev.arplant.59.032607.092942
[2] I. Baxter, M. Ouzzani, S. Orcun, B. Kennedy, S. S. Jandhyala and D. E. Salt, “Purdue Ionomics Information Management System (PiiMS): An Integrated Functional Genomics Platform,” Plant Physiology, Vol. 143, 2007, pp. 600-611. doi:10.1104/pp.106.092528
[3] W. Lorraine and D. E. Salt, “The Plant Ionome Coming into Focus,” Current Opinion in Plant Biology, Vol. 12, No. 3, 2009, pp. 247-249.
[4] D. E. Salt, “Update on Ionomics,” Plant Physiology, Vol. 136, No. 1, 2004, pp. 2451-2456. doi:10.1104/pp.104.047753
[5] H. Marschner, “Mineral Nutrition of Higher Plants,” 2nd Edition, Academic, London, 1995, pp. 369-379.
[6] K. Mengel, E. A. Kirkby, H. Kosegarten and A. Thomas, “Principles of Plant Nutrition,” Springer Science + Business media, Dordrecht, 2001.
[7] R. D. Macnicol and P. H. T. Beckett, “Critical Tissue Concentrations of Potentially Toxic Element,” Plant Soil, Vol. 85, No. 1, 1985, pp. 85-107.
[8] P. H. Brown, N. Bellaloui, M. A. Wimmer, E. S. Bassil, J. Ruiz, H. Hu, H. Pfeffer, F. Dannel and V. Romheld, “Boron in Plant Biology,” Plant Biology, Vol. 4, No. 2, 2002, pp. 205-223. doi:10.1055/s-2002-25740
[9] S. Arrivault, T. Senger and U. Kramer, “The Arabidopsis Metal Tolerance Protein AtMTP3 Maintains Metal Homeostasis by Mediating Zn Exclusion from the Shoot Under Fe Deficiency and Zn Oversupply,” The Plant Journal, Vol. 46, No. 5, 2006, pp. 861-879. doi:10.1111/j.1365-313X.2006.02746.x
[10] A. B. Robinson and L. Pauling, “Techniques of Orthomolecular Diagnosis,” Clinical Chemistry, Vol. 20, No. 8, 1974, pp. 961-965.
[11] E. E. Rogers and M. L. Guerinot, “FRD3, A Member of the Multidrug and Toxin Efflux Family, Controls Iron Deficiency Responses in Arabidopsis,” Plant Cell, Vol. 14, No. 8, 2002, pp. 1787-1799. doi:10.1105/tpc.001495
[12] T. Punshon, B. P. Jackson, P. M. Bertsch and J. Burger, “Mass Loading of Nickel and Uranium on Plant Surfaces: Application of Laser Ablation-ICP-MS,” Journal of Environmental Monitoring, Vol. 6, No. 2, 2004, pp. 153159. doi:10.1039/b310878c
[13] E. Delhaize, P. J. Randall, P. A. Wallace and A. Pinkerton, “Screening Arabidopsis for Mutants in Mineral Nutrition,” Plant Soil, Vol. 155-156, No. 1, 1993, pp. 131-134. doi:10.1007/BF00025001
[14] H. Zhao, S. Lei, X. L. Duan, F. S. Xu, Y. H. Wang and J. L. Meng, “Mapping and Validation of Chromosome Regions Conferring a New Boron-Efficient Locus in Brassica napus,” Molecular Breeding, Vol. 22, No. 3, 2008, pp. 495-506. doi:10.1007/s11032-008-9193-3
[15] M. P. Isaure, A. Fraysse, G. Devies, P. Le Lay and B. Fayard, “Micro-Chemical Imaging of Cesium Distribution in Arabidopsis thaliana Plant and Its Interaction with Potassium and Essential Trace Elements,” Biochimie, Vol. 88, No. 11, 2006, pp. 1583-1590. doi:10.1016/j.biochi.2006.08.006
[16] K. Nakano and K. Tsuji, “Development of Confocal 3D Micro XRF Spectrometer and Its Application to Rice Grain,” Bunseki Kagaku, Vol. 55, No. 6, 2006, pp. 427432. doi:10.2116/bunsekikagaku.55.427
[17] D. Baldwin, V. Crane and D. Rice, “A Comparison of Gel-Based, Nylon Filter and Microarray Techniques to Detect Differential RNA Expression in Plants,” Current Opinion in Plant Biology, Vol. 2, No. 2, 1999, pp. 96103. doi:10.1016/S1369-5266(99)80020-X
[18] B. Lemieux, A. Aharoni and M. Schena, “Overview of DNA Chip Technology,” Molecular Breeding, Vol. 4, No. 4, 1998, pp. 277-289. doi:10.1023/A:1009654300686
[19] J. A. Eisen, “Phylogenomics: Improving Functional Predictions for Uncharacterized Genes by Evolutionary Analysis,” Genome Research, Vol. 8, 1998, pp. 163-167.
[20] V. G. Sobhana, N. Senthil, M. Raveendran, K. Kalpana, P. Nagarajan, V. Velu, A. Arumugachamy, A. John Joel, S. Vellaikumar, D. Abirami and K. Satismruti, “Exploitation of the Natural Variability for Phytate Phosphorus among the Maize Inbred Lines,” 15th ADNAT Convention on Genomics and Biodiversity, Centre for Cellular and Molecular Biology, Hyderabad, 23-25 February 2011, p. 70.
[21] V. G. Sobhana, “Molecular Characterization of Low Phytate Maize (Zea mays L.) Developed through Induced Mutation and Exploitation of Natural Variability for Grain Micronutrient,” PhD Thesis, Tamil Nadu Agricultural University, Coimbatore, 2010.
[22] J. Misson, K. G. Raghothama, J. Ajay, J. Juliette, A. Maryse, B. Richard, O. Philippe, S. Audrey Shauna, R. Norbert, P. Doumas, N. Philippe, H. E. Luis, N. Laurent and M. C. Thibaud, “A Genome-Wide Transcriptional Analysis Using Arabidopsis thaliana Affymetrix Gene Chips Determined Plant Responses to Phosphate Deprivation,” Proceedings of the National Academy of Sciences, Vol. 102, 2005, pp. 11934-11939.
[23] S. P. Hazen, J. O. Borevitz, F. G. Harmon, J. L. PrunedaPaz and T. F. Schultz, “Rapid Array Mapping of Circadian Clock and Developmental Mutations in Arabidopsis,” Plant Physiology, Vol. 138, No. 2, 2005, pp. 990997. doi:10.1104/pp.105.061408
[24] A. Rus, I. Baxter, B. Muthukumar, J. Gustin, B. Lahner, et al., “Natural Variants of AtHKT1 Enhance Na+ Accumulation in Two Wild Populations of Arabidopsis,” PLoS Genetics, Vol. 2, No. 12, 2006, Article ID: e210. doi:10.1371/journal.pgen.0020210
[25] H. Tomastu, J. Takano, H. Takahasi, W. T. Akiko, N. Shibagaki and T. Fujiwara, “An Arabidopsis thaliana High-Affinity Molybdate Transporter Required for Efficient Uptake of Molybdate from Soil,” Proceedings of the National Academy of Sciences, Vol. 104, 2007, pp. 18807-18812. doi:10.1073/pnas.0706373104
[26] G. J. Norton, C. M. Deacon, Z. X. Li, S. Y. Huang, A. A. Meharg and A. H. Price, “Genetic Mapping of the Rice Ionome in Leaves and Grain: Identification of QTLs for 17 Elements Including Arsenic, Cadmium, Iron and Selenium,” Plant Soil, Vol. 329, No. 1-2, 2010, pp. 139-153. doi:10.1007/s11104-009-0141-8
[27] V. Raboy, “Origin and Seed Phenotype of Maize Low Phytic Acid 1-1 and Low Phytic Acid 2-1,” Plant Physiology, Vol. 124, No. 1, 2000, pp. 355-368. doi:10.1104/pp.124.1.355
[28] V. G. Sobhana, N. Senthil, M. Raveendran, K. Satismruti, P. Nagarajan, Sangeetha, et al., “Genetic Variation and Stability Analysis of Grain Iron and Zinc Concentrations in Maize (Zea mays L.) under Three Environments,” Plant, Soil and Environment, 2010 (Submitted Article).
[29] M. Joe, I. R. Baxter, J. Lee, L. Li, B. Lahner, G. Natasha Kaplan, D. E. Salt and L. U. Guerinot, “The Ferroportin Metal Efflux Proteins Function in Iron and Cobalt Homeostasis in Arabidopsis,” The Plant Cell, Vol. 21, 2009, pp. 3326-3338. doi:10.1105/tpc.109.069401
[30] T. Pozo, V. Cambiazo and M. González, “Gene Expression Profiling Analysis of Copper Homeostasis in Arabidopsis thaliana,”Biochemical and Biophysical Research Communications, Vol. 393, No. 2, 2010, pp. 248-252. doi:10.1016/j.bbrc.2010.01.111
[31] T. Yang, W. D. Lin and W. Schmidt, “Transcriptional Profiling of the Arabidopsis Iron Deficiency Response Reveals Conserved Transition Metal Homeostasis Networks,” Plant Physiology, Vol. 152, 2010, pp. 21302141. doi:10.1104/pp.109.152728
[32] B. Elizabeth, A. Tilman, I. Anthony, O. Cherie, R. Ana, B. Lahner, H. Owen, Y. Elena, J. F. Harper, L. Mary, M. Zhang, D. Salt and R. Baxter, “Natural Genetic Variation in Selected Populations of Arabidopsis thaliana Is Associated with Ionomic Differences,” PLoS ONE, Vol. 5, No. 6, 2010, pp. 11081-11088. doi:10.1371/journal.pone.0011081
[33] V. K Tiwari, R. Nidhi, C. Paeveen, K. Neelam, A. Renuka, G. S. Randhawa, H. S. Dhaliwal, B. Keller and K. Singh, “Mapping of Quantitative Trait Loci for Grain Iron and Zinc Concentration in Diploid a Genome Wheat,” Journal of Heredity, Vol. 100, No. 6, 2009, pp. 771-776. doi:10.1093/jhered/esp030
[34] J. Liu, J. Yang, R. Li, S. Lei, C. Zhang, L. Yan, F. Xu and J. Meng, “Analysis of Genetic Factors that Control Shoot Mineral Concentrations in Rapeseed (Brassica napus) in Different Boron Environments,” Plant Soil, Vol. 320, No. 1-2, 2009, pp. 255-266. doi:10.1007/s11104-009-9891-6

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.