Additive Protective Effects of Luteolin and Pyruvate against 6-Hydroxydopamine and 3-Hydroxykynurenine Induced Neurotoxicity in SH-SY5Y Cells

DOI: 10.4236/pp.2013.44053   PDF   HTML   XML   4,362 Downloads   6,052 Views   Citations


Oxidative stress has been implicated as one of the causes in cell death in many neurodegenerative disorders. Due to antioxidative properties in vitro, the use of flavonoids and other polyphenolic compounds synthesised by plants are considered to be a promising strategy to prevent Alzheimer’s disease and Parkinsons’s disease. In the present study, we tested protective effects of some polyphenols and sodium pyruvate on 6-hydroxydopamine (6-OHDA), salsolinol and 3-hydroxykynurenine (3-HK) induced neurotoxicity in human neuroblastoma SH-SY5Y cells. We found that luteolin prevented from 6-OHDA and 3-HK induced cell viability reduction and that one of the mechanisms involved in the neuroprotective process was the ability to increase the level of cellular ATP. However, luteolin was ineffective against salsolinol-induced toxicity. Neither pre-treatment with flavonoids nor simultaneous addition had any protective effects on 6-OHDA, salsolinol or 3-HK induced neurotoxicity. Interestingly, both pre-treatment and co-treatment with pyruvate provided protection against 6-OHDA, salsolinol or 3-HK induced toxicity. Moreover, luteolin and sodium pyruvate, administered together, acted additively, so to achieve the same effect, lower concentrations were needed. The ability of luteolin and sodium pyruvate to reduce toxicity of 6-OHDA and 3-HK in SH-SY5Y cells may be related to two different neuroprotective mechanisms and the capability to penetrate into the cell.

Share and Cite:

N. Wszelaki and M. Melzig, "Additive Protective Effects of Luteolin and Pyruvate against 6-Hydroxydopamine and 3-Hydroxykynurenine Induced Neurotoxicity in SH-SY5Y Cells," Pharmacology & Pharmacy, Vol. 4 No. 4, 2013, pp. 369-376. doi: 10.4236/pp.2013.44053.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. T. Lin and M. F. Beal, “Mitochondrial Dysfunction and Oxidative Stress in Neurodegenerative Diseases,” Nature, Vol. 443, No. 7113, 2006, pp. 787-795. doi:10.1038/nature05292
[2] L. M. Sayre, G. Perry and M. A. Smith, “Oxidative Stress and Neurotoxicity,” Chemical Research in Toxicology, Vol. 21, No. 1, 2008, pp. 172-188. doi:10.1021/tx700210j
[3] C. Behl, J. B. Davis, R. Lesley and D. Schubert, “Hydrogen Peroxide Mediates Amyloid β-Protein Toxicity,” Cell, Vol. 77, No. 6, 1994, pp. 817-827. doi:10.1016/0092-8674(94)90131-7
[4] M. F. Galindo, J. Jordan, C. Gonzales-Garcia and V. Cena, “Chromaffin Cell Death Induced by 6-Hydroxydopamine Is Independent of Mitochondrial Swelling and Caspase Activation,” Journal of Neurochemistry, Vol. 84, No. 5, 2003, pp. 1066-1073. doi:10.1046/j.1471-4159.2003.01592.x
[5] N. Li, K. Ragheb, G. Lawler, J. Sturgis, B. Rajwa, J. A. Melendez and J. P. Robinson, ”Mitochondrial Complex I Inhibitor Rotenone Induces Apoptosis through Enhancing Mitochondrial Reactive Oxygen Species Production,” The Journal of Biological Chemistry, Vol. 278, No. 10, 2003, pp. 8516-8525. doi:10.1074/jbc.M210432200
[6] K. Shimoke, M. Kudo and T. Ikeuchi, “MPTP-Induced Reactive Oxygen Species Promote Cell Death through a Gradual Activation of Caspase-3 without Expression of GRP78/BiP as a Preventive Measure against ER Stress in PC12 Cells,” Life Sciences, Vol. 73, No. 5, 2003, pp. 581593. doi:10.1016/S0024-3205(03)00351-5
[7] S. Wanpen, P. Govitrapong, S. Shavali, P. Sangchot and M. Ebad, “Salsolinol, a Dopamine-Derived Tetrahydroisoquinoline, Induces Cell Death by Causing Oxidative Stress in Dopaminergic SH-SY5Y Cells and the Said Effect Is Attenuated by Metallothionein,” Brain Research, Vol. 1005, No. 1-2, 2004, pp. 67-76. doi:10.1016/j.brainres.2004.01.054
[8] C. R. Evans, “Flavonoid Antioxidants,” Current Medicinal Chemistry, Vol. 8, No. 7, 2001, pp. 797-807. doi:10.2174/0929867013373011
[9] Y. Xu, S. Sun, X. Cao and E. Tong, “Protective Effect of GSH on PD Model Induced by 6-OHDA in Vitro,” Journal of Huazhong University of Science and Technology, Vol. 22, No. 4, 2002, pp. 355-358. doi:10.1007/BF02896785
[10] F. J. Fernandez-Gomez, M. D. Pastor, E. M. Garcia-Martinez, R. Melero-Fernandez de Mera, M. Gou-Fabregas, M. Gomez-Lazaro, S. Calvo, R. M. Soler, M. F. Galindo and J. Jordan, “Pyruvate Protects Cerebellar Granular Cells from 6-Hydroxydopamine Induced Cytotoxicity by Activating the Akt Signalling Pathway and Increasing Glutathione Peroxidise Expression,” Neurobiology of Disease, Vol. 24, No. 2, 2006, pp. 296-307. doi:10.1016/j.nbd.2006.07.005
[11] A. M. Munoz, P. Rey, R. Soto-Otero, M. J. Guerra and J. L. Labandeira-Garcia, “Systemic Administration of N-Acetylcysteine Protects Dopaminergic Neurons against 6-Hydroxydopamine-Induced Generation,” Journal of Neuroscience Research, Vol. 76, No. 4, 2004, pp. 551-562. doi:10.1002/jnr.20107
[12] X. Wang, E. Perez, R. Liu, R. T. Mallet and S. H. Yang, “Pyruvate Protects Mitochondria from Oxidative Stress in Human Neuroblastoma SK-N-SH Cells,” Brain Research, Vol. 1132, No. 1, 2007, pp. 1-9. doi:10.1016/j.brainres.2006.11.032
[13] G. Alvarez, M. Ramos, F. Ruiz, J. Satrustegui and E. Bogonez, “Pyruvate Protection against β-Amyloid-Induced Neuronal Death: Role of Mitochondrial Redox State,” Journal of Neuroscience, Vol. 73, No. 2, 2003, pp. 260269. doi:10.1002/jnr.10648
[14] T. Mosmann, “Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays,” Journal of Immunological Methods, Vol. 65, No. 1-2, 1983, pp. 55-63. doi:10.1016/0022-1759(83)90303-4
[15] C. A. Rice Evans, N. J. Miller and G. Paganga, “Structure-Antioxidant Activity Relationships of Flavonoids and Phenolic Acids,” Free Radical Biology and Medicine, Vol. 36, No. 7, 1996, pp. 933-956. doi:10.1016/0891-5849(95)02227-9
[16] P. Otero, M. Viana, E. Herrera and B. Bonet, “Antioxidant and Prooxidant Effects of Ascorbic Acid, Dehydroascorbic Acid and Flavonoids on LDL Submitted to Different Degrees of Oxidation,” Free Radical Biology and Medicine, Vol. 27, No. 6, 1997, pp. 619-626. doi:10.3109/10715769709097865
[17] P. G. Pietta, “Flavonoids as Antioxidants,” Journal of Natural Product, Vol. 63, No. 7, 2000, pp. 1035-1042. doi:10.1021/np9904509
[18] K. Ishige, D. Schubert and Y. Sagara, “Flavonoids Protect Neuronal Cells from Oxidative Stress by Three Distinct Mechanisms,” Free Radical Biology and Medicine, Vol. 30, No. 4, 2001, pp. 433-446. doi:10.1016/S0891-5849(00)00498-6
[19] M. E. Bembenek, C. W. Abell, L. A. Chrisey, M. D. Rozwadowska, A. W. Gessner and A. Brossi, “Inhibition of Monoamine Oxidase-A and Oxidase-B by Simple Isoquinoline Alkaloids-Racemic and Optically Active 1,2,3,4Tetrahydroisoquinoline, 3,4-Dihydroisoquinoline, and Fully Aromatic Isoquinoline,” Journal of Medical Chemistry, Vol. 33, No. 1, 1990, pp. 147-152. doi:10.1021/jm00163a025
[20] A. Storch, A. Kaftan, K. Burkhardt and J. Schwarz, “1-Methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline Salsolinol Is Toxic to Dopaminergic Neuroblastoma SH-SY5Y Cells via Impairment of Cellular Energy Metabolism,” Brain Research, Vol. 855, No. 1, 2000, pp. 67-75. doi:10.1016/S0006-8993(99)02272-6
[21] J. M. Willets, D. G. Lambert, J. Lunec and H. R. Griffiths, “Studies on the Neuro-toxicity of 6,7-Dihydroxy-1-methyl1,2,3,4-tetrahydroisoquinoline (Salsolinol) in SH-SY5Y Cells,” European Journal of Pharmacology: Environmental Toxicology and Pharmacology, Vol. 293, No. 4, 1995, pp. 319-326. doi:10.1016/0926-6917(95)90051-9
[22] D. J. Bonda, M. Mailankot, J. G. Stone, M. R. Garrett, M. Staniszewska, R. J. Castellani, J. R. Das and Y. Tizabi, “Additive Protective Effects of Donezepil and Nicotine against Salsolinol-Induced Cytotox-icity in SH-SY5Y Cells,” Neurotoxicity Research, Vol. 16, No. 3, 2009, pp. 194-204.
[23] Y. Y. Glinka and M. B. Youdim, “Inhibition of MitoChondrial Complexes I and IV by 6-Hydroxydopamine,” European Journal of Pharmacology: Environmental Toxicology and Pharmacology, Vol. 292, No. 3-4, 1995, pp. 329-332.
[24] C. L. Eastman and T. R. Guilarte, “The Role of Hydrogen Peroxide in the in Vitro Cytotoxicity of 3-Hydroxykynurenine,” Neurochemical Research, Vol. 15, No. 11, 1990, pp. 1101-1107. doi:10.1007/BF01101711
[25] V. Manju, V. Balsubramaniyan and N. Nalini, “Rat Colonic Lipid Peroxydation and Antioxidant Status: The Effects of Dietary Luteolin in 1,2-Dimethylhydrazine Challenge,” Cellular & Mollecular Biology Letters, Vol. 10, No. 3, 2005, pp. 535-551.
[26] Z. Quisheng, Z. Yuntao, Z. Rongliang, G. Dean and L. Changling, “Effects of Verbascoside and Luteolin on Oxidative Damage in Brain of Heroin Treated Mice,” Pharmazie, Vol. 60, No. 7, 2005, pp. 539-543.
[27] J. S. Kim and C. Jobin, “The Flavonoid Luteolin Prevents Lipopolysaccharide-Induced NF-KappaB Signalling and Gene Expression by Blocking IkappaB Kinase Activity in Intestinal Epithelial Cells and Bone-Marrow Derived Dendritic Cells,” Immunology, Vol. 115, No. 3, 2005, pp. 375-387. doi:10.1111/j.1365-2567.2005.02156.x
[28] C. Y. Chen, W. H. Peng, K. D. Tsai and S. L. Hsu, “Luteolin Suppresses Inflammation-Associated Gene Expression by Blocking NF-KappaB and AP-1 Activation Pathway in Mouse Alveolar Macrophages,” Life Sciences, Vol. 81, No. 23-24, 2007, pp. 1602-1614. doi:10.1016/j.lfs.2007.09.028
[29] N. R. Cook, C. M. Albert, J. M. Gaziano, E. Zaharris, J. MacFadyen, E. Danielson, J. Buring and J. E. Manson, “A Randomized Factorial Trial of Vitamins X and E and Beta Carotene in the Secondary Prevention of Cardio-vascular Events in Women: Results from the Women’s Antioxidant Cardiovascular Study,” Archives of Internal Medicine, Vol. 167, No. 15, 2007, pp. 1610-1618. doi:10.1001/archinte.167.15.1610
[30] N. Katsiki and C. Manes, “Is There a Role for Supplemented Antioxidants in the Prevention of Artherioscleriosis?” Clinical Nutrition, Vol. 28, No. 1, 2009, pp. 3-9. doi:10.1016/j.clnu.2008.10.011
[31] R. D. Guzy and P. T. Schumacker, “Oxygen Sensing by Mitochondria at Complex III: The Paradox of Increased Reactive Oxygen Species during Hypoxia,” Experimental Physiology, Vol. 91, No. 5, 2006, pp. 807-819. doi:10.1113/expphysiol.2006.033506
[32] E. Owusu-Ansah, A. Yavari, S. Mandal and U. Banerjee, “Distinct Mitochondrial Retrograde Signals Control the G1-S Cell Cycle Checkpoint,” Nature Genetics, Vol. 40, No. 3, 2008, pp. 356-361. doi:10.1038/ng.2007.50
[33] J. H. Jeong, H. J. Kim, T. J. Lee, M. K. Kim, E. S. Park and B. S. Choi, “Epigallocatechin-3-Gallate Attenuates Neuronal Damage Induced by 3-Hydroxykynurenine,” Toxicology, Vol. 195, No. 1, 2004, pp. 53-60. doi:10.1016/j.tox.2003.08.007
[34] C. Behl, T. Skutella, F. Lezoualch, A. Post, M. Widmann, C. J. Newton and F. Holsboer, “Neuroprotection against Oxidative Stress by Estrogens: Structure-Activity Relationship,” Molecular Pharmacology, Vol. 51, No. 4, 1997, pp. 535-541.
[35] A. Roth, W. Schaffner and C. Hertel, “Phytoestrogen Kaempferol (3,4’,5,7-Tetrahydroxyflavone) Protects PC12 and T47D Cells from β-Amyloid-Induced Toxicity,” Journal of Neuroscience Research, Vol. 57, No. 3, 1999, pp. 399-404. doi:10.1002/(SICI)1097-4547(19990801)57:3<399::AID-JNR12>3.0.CO;2-W

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.