Share This Article:

X-Ray Crysatllographic and Vibrational Spectroscopic Studies of Thorium Bromate Hydrate

Abstract Full-Text HTML Download Download as PDF (Size:501KB) PP. 70-74
DOI: 10.4236/csta.2013.22010    2,842 Downloads   5,315 Views   Citations

ABSTRACT

Th(BrO3)3·H2O single crystals were grown from its aqueous solution at room temperature. Single crystal XRD, Raman and FTIR techniques were used to investigate the crystal structure. The crystal structure was solved by Patterson method. The as grown crystals are in monoclinic system with space group P21/c. The unit cell parameters are a = 12.8555(18) ?, b = 7.8970(11) ?, c = 9.0716(10)?, α = 90°, β = 131.568° and γ = 90° and unit cell volume is 689.1(2)?3. Z = 8, R factor is 5.9. The Raman and FTIR studies indicate the lowering of symetry of bromate anion from C3V to C1. Hydrogen bonds with varying strengths are present in the crystal. The centrosymmetric space group P21/c of the crystal is confirmed by the non-coincidence of majority of Raman and IR bands.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Bushiri, T. Kochuthresia, S. Athimoolam, V. Ramakrishnan and V. Vaidyan, "X-Ray Crysatllographic and Vibrational Spectroscopic Studies of Thorium Bromate Hydrate," Crystal Structure Theory and Applications, Vol. 2 No. 2, 2013, pp. 70-74. doi: 10.4236/csta.2013.22010.

References

[1] S. K. Misra and X. Li, “Electron Paramagnetic Resonance of Gd3+-Doped Dy(BrO3)3b9H2O and O3)39H2O Single Crystals: Structural Phase Transitions and SpinHamiltonian Parameters,” Journal of Physics: Condensed Matter, Vol. 4, No. 13, 1992, pp. 3559-3670. doi:10.1088/0953-8984/4/13/025
[2] D. Neogy and T. Purohit, “Magnetic Behavior and Crystal Field of Dy(BrO3)39H2O,” Physical Review B, Vol. 35, No. 11, 1987, pp. 5849-5855. doi:10.1103/PhysRevB.35.5849
[3] N. Matsuyama, N. Okazaki, Y. Tanimoto and I. Hanazaki, “Photo-Response of the Bromate-Sulfite Chemical Oscillator with Tris-(bipyridine)ruthenium(II) as a Catalyst,” Chemical Physics Letters, Vol. 323, No. 3, 2000, pp. 372-376. doi:10.1016/S0009-2614(00)00507-8
[4] K. Kurin-Csorgei, I. R. Epstein and M. Orbán, “Systematic Design of Chemical Oscillators Using Complexation and Precipitation Equilibria,” Nature, Vol. 433, No. 7022, 2005, pp. 139-142. doi:10.1038/nature03214
[5] M. Iranifam, M. A. Segundo, J. L. M. Santos, J. L. F. C. Lima and M. H. Sorouraddin, “Oscillating Chemiluminescence Systems: State of the Art,” Luminescence, Vol. 25, No. 6, 2010, pp. 409-418. doi:10.1002/bio.1203
[6] S. Paakkonen, J. Pursiainen and M. Lajunen, “Fast Oxidation of Secondary Alcohols by the Bromate-Bromide System Using Cyclic Microwave Heating in Acidic Water,” Tetrahedron Letters, Vol. 51, No. 51, 2010, pp. 66956699. doi:10.1016/j.tetlet.2010.10.009
[7] D. Deepa and G. Chandramohan, “Kinetic and Mechanistic Study on the Oxidation of Indole-3-Propionic Acid in Acetic Acid Medium,” Research Journal of Chemical Sciences, Vol. 2, No. 10, 2012, pp. 70-74.
[8] M. R. Shishehbore, A. Sheibani and M. Eslami, “Thionine-Bromate as a New Reaction System for Kinetic Spectrophotometric Determination of Hydrazine in Cooling Tower Water Samples,” Journal of Chemistry, Vol. 2013, 2013, pp. 1-5.
[9] J. Albertsson and I. Elding, “The Geometry of the Nonaaqualanthanoid (3+) Complex in the Solid Bromates and Ethyl Sulphates,” Acta Crystallographica, Vol. B33, 1977, pp. 1460-1469.
[10] H. Poulet, J. P. Mathieu, D. Vergnat, B. Vergnat, A. Hadni and X. Gerbaux, “Vibrational Spectra, Structure, and Phase Transition in Neodymium and Gadolinium Bromate Enneahydrates,” Physica Status Solidi, Vol. 32, No. 2, 1975, pp. 509-520. doi:10.1002/pssa.2210320221
[11] R. E. Gerkin and W. J. Reppart, “The Structures of the Lanthanide Ethyl Sulfate Enneahydrates, M(C2H5SO4)3.9H2O [M = La-Lu (except Pm)], at 171 K,” Acta Crystallographica, Vol. C40, No. 5, 1984, pp. 781786.
[12] R. E. Gerkin and W. J. Reppart, “Structures of Holmium Bromate Enneahydrate at 168 and 294 K and Their Implications for the Isomorphic Series of Rare-Earth Bromate Enneahydrates,” Acta Crystallographica, Vol. C43, No. 4, 1987, pp. 623-631.
[13] A. C. Blackburn, J. C. Gallucci and R. E. Gerkin, “The Structure of Hexaaquaaluminium(III) Bromatetrihydrate, [Al(H2O)6](BrO3)33H2O,” Acta Crystallographica, Vol. C48, No. 7, 1992, pp. 1185-1188.
[14] K. Lieselotte, L. K. Templeton and D. H. Templeton, “Structure of Barium Bromate Monohydrate,” Acta Crystallographica, Vol. C45, No. 4, 1989, pp. 672-673.
[15] A. Abbasi and L. Eriksson, “Nonaaquayttrium(III) Tris(Bromate),” Acta Crystallographica, Vol. E62, No. 5, 2006, pp. 126-128.
[16] A. C. T North, D. C. Philips and F. S. Mathews, “A Semi-Empirical Method of Absorption Correction,” Acta Crystallographica, Vol. A24, No. 3, 1968, pp. 351-359.
[17] Enraf-Nonius, “CAD-4 Software. Version 5.0.,” EnrafNonius, Delft, 1994.
[18] T. Ueki, A. Zalkin and D. H. Templeton, “Crystal Structure of Thorium Nitrate Pentahydrate by X-Ray Diffraction,” Acta Crystallographica, Vol. 20, No. 6, 1966, pp. 836-841. doi:10.1107/S0365110X66001944
[19] W. G. Fateley, F. R. Dollish, N. T. McDevitt and F. F. Bentley, “Infrared and Raman Selection Rules for Molecular and Lattice Vibrations—The Correlation Method,” Wiley-Interscience, New York, 1972.
[20] K. Nakamoto, “Infrared and Raman Spectra of Inorganic and Coordination Compounds—Part A,” 5th Edition Wiley-Interscience, New York, 1997.
[21] D. M. Adams, J. Barlow, H. Tan and M. J. Taylor, “The Vibrational Spectra of Mercury (I) Bromate, Sulphate, and Nitrate Dihydrate,” Journal of Raman Spectroscopy, Vol. 5, No. 1, 1976, pp. 63-73. doi:10.1002/jrs.1250050108
[22] R. S. Jayasree, M. J. Bushiri, A. John and V. U. Nayar, “Temperature Dependent Polarized Raman Spectra of Nonaaqualanthanoid (Pr) Single Crystal,” Spectrochimica Acta, Vol. A64, No. 2, 2006, pp. 518-525.
[23] T. Devanathan and T. K. K. Srinivasan, “Raman Spectra of Single-Crystal Cd(BrO3)32 H2O and Polycrystalline Cd(BrO3)32D2O,” Journal of Raman Spectroscopy, Vol. 18, No. 7, 1987, pp. 525-531. doi:10.1002/jrs.1250180714
[24] T. K. K. Srinivasan and T. Devanathan, “Raman Spectral Studies of Dehydration of Sr(BrO3)2H2O,” Journal of Raman Spectroscopy, Vol. 21, No. 2, 1990, pp. 99-102. doi:10.1002/jrs.1250210206
[25] M. J. Bushiri and V. U. Nayar, “Raman and FTIR Spectra of [Cu(H2O)6](Br3O)2 and [Al(H2O)6](BrO3)3 × 3H2O,” Spectrochimica Acta, Vol. A58, No. 5, 2002, pp. 899-909.
[26] M. J. Bushiri and V. U. Nayar, “Raman and FTIR Spectra of RE(BrO3)39 H2O (RE = Eu, Tb) and Electronic Transitions in Eu(BrO3)39 H2,” International Journal of Modern Physics, Vol. B15, No. 18, 2001, pp. 2499-2507.
[27] A. Viste and D. E. Irish, “Raman and Infrared Spectral Studies of Polycrystalline Thallium(I) Halates, TlXO3,” Canadian Journal of Chemistry, Vol. 55, No. 18, 1977, pp. 3218-3227. doi:10.1139/v77-448
[28] E. J. Schelter, P. Yang, B. L. Scott, R. E. Da Re, K. C. Jantunen, R. L. Martin, P. J. Hay, D. E. Morris and J. L. Kiplinger, “Systematic Studies of Early Actinide Complexes:Thorium(IV) Fluoroketimides,” Journal of the American Chemical Society, Vol. 129, No. 16, 2007, pp. 5139-5152. doi:10.1021/ja0686458
[29] D. E. Morris, R. E. Da Re, K. C. Jantunen, I. C. Rodriguez and J. L. Kiplinger, “Trends in Electronic Structure and Redox Energetics for Early-Actinide Pentamethylcyclopentadienyl Complexes,” Organometallics, Vol. 23, No. 22, 2004, pp. 5142-5153. doi:10.1021/om049634v

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.