Share This Article:

Delocalization of Acoustic Waves in a One-Dimensional Random Dimer Media

Abstract Full-Text HTML XML Download Download as PDF (Size:281KB) PP. 45-52
DOI: 10.4236/oja.2013.32008    2,039 Downloads   4,257 Views  

ABSTRACT

The propagation of classical waves in one-dimensional random media is examined in presence of short-range correlation in disorder. A classical analogous of the Kronig-Penney model is proposed by means a chain of repeated sub-systems, each of them constituted by a mass connected to a rigid foundation by a spring. The masses are related to each other by a string submitted to uniform tension. The nature of the modes is investigated by using different transfer matrix formalisms. It is shown that in presence of short-range correlation in the medium which corresponds to the RD model- the localization-delocalization transition occurs at a resonance frequency . The divergence of near is studied, and the critical exponent that characterizes the power-law behavior of near is estimated. Moreover an exact analytical study is carried out for the delocalization properties of the waves in the RD media. In particular, we predict the resonance frequency at which the waves can propagate in the entire chain. The transmission properties of the system are numerically studied using a statistical procedure yielding various physical magnitudes such the transmission coefficient, the localization length and critical exponents. In particular, it is shown that the presence of correlation in disorder restores a large number of extended Bloch-like modes in contradiction with the general conclusion of the localization phenomenon in one-dimensional systems with correlated disorder.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S. Brezini and A. Brezini, "Delocalization of Acoustic Waves in a One-Dimensional Random Dimer Media," Open Journal of Acoustics, Vol. 3 No. 2, 2013, pp. 45-52. doi: 10.4236/oja.2013.32008.

References

[1] P. W. Anderson, “Absence of Diffusion in Certain Random Lattices,” Physical Review, Vol. 109, No. 5, 1958, pp. 1492-1505. doi:10.1103/PhysRev.109.1492
[2] E. Abrahams, P. W. Anderson, D. C. Licciardello and T. V. Ramakrishnan, “Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions,” Physical Review Letters, Vol. 42, No. 10, 1979, pp. 673-676. doi:10.1103/PhysRevLett.42.673
[3] P. L. Lee and T. V. Ramakrishnan, “Disordered Electronic Systems,” Reviews of Modern Physics, Vol. 57, No. 2, 1985, pp. 287-337. doi:10.1103/RevModPhys.57.287
[4] B. L. Altshuler, P. A. Lee and R. A. Webb, “Mesoscopic Phenomena in Solids,” Elsevier, Amsterdam, 1991.
[5] C. W. J. Beenhakker, “Random-Matrix Theory of Quantum Transport,” Reviews of Modern Physics, Vol. 69, No. 3, 1997, pp. 731-808. doi:10.1103/RevModPhys.69.731
[6] N. F. Mott and W. D. Twose, “The Theory of Impurity Conduction,” Advances in Physics, Vol. 10, No. 38, 1961, pp. 107-163. doi:10.1080/00018736100101271
[7] P. Sheng, “Scattering and Localization of Classical Waves in Random Media,” World Scientific, Singapore, 1990.
[8] S. He and J. D. Maynard, “Detailed Measurements of Inelastic Scattering in Anderson Localization,” Physical Review Letters, Vol. 57, No. 25, 1986, pp. 3171-3174. doi:10.1103/PhysRevLett.57.3171
[9] S. John, “Electromagnetic Absorption in a Disordered Medium near a Photon Mobility Edge,” Physical Review Letters, Vol. 53, No. 22, 1984, pp. 2169-2172. doi:10.1103/PhysRevLett.53.2169
[10] J. D. Maynard, “Acoustical Analogs of Condensed-Matter Problems,” Reviews of Modern Physics, Vol. 73, No. 2, 2001, pp. 401-417. doi:10.1103/RevModPhys.73.401
[11] M. M. Millonas, “Fluctuations and Order: The New Synthesis,” MIT Press, Boston, 1997.
[12] D. H. Dunlap, H. L. Wu and P. Phillips, “Absence of Localization in a Random-Dimer Model,” Physical Review Letters, Vol. 65, No. 1, 1990, pp. 88-91. doi:10.1103/PhysRevLett.65.88
[13] H. L. Wu and P. Phillips, “Repulsive Binary Alloys and the Absence of Localization: Application to Fibonacci Lattices and Molecularly Based Electronic Filters,” Journal of Chemical Physics, Vol. 93, 1990, p. 7369. doi:10.1063/1.459411
[14] H. L. Wu and P. Phillips, “Polyaniline Is a Random-Dimer Model: A New Transport Mechanism for Conducting Polymers,” Physical Review Letters, Vol. 66, No. 10, 1991, pp. 1366-1369. doi:10.1103/PhysRevLett.66.1366
[15] H. L. Wu and P. Phillips, “Localization and Its Absence: A New Metallic State for Conducting Polymers,” Science, Vol. 252, No. 5014, 1991, pp. 1805-1812. doi:10.1126/science.252.5014.1805
[16] A. Sanchez, E. Macia and F. Dominguez-Adame, “Suppression of Localization in Kronig-Penney Models with Correlated Disorder,” Physical Review B, Vol. 49, No. 1, 1994, pp. 147-157. doi:10.1103/PhysRevB.49.147
[17] E. Diez, R. Gomez-Alcala, F. Dominguez-Adame, A. Sanchez and G. P. Bermann, “Coherent Carrier Dynamics in Semiconductor Superlattices,” Physics Letters A, Vol. 240, No. 1-2, 1998, pp. 109-111. doi:10.1016/S0375-9601(98)00023-1
[18] V. Bellani, E. Diez, R. Hey, L. Toni, L. Tarricone, G.B. Parravicini, F. Dominguez-Adame and R. Gomez Alcala, Physical Review Letters, Vol. 82, 1999, p. 2159. doi:10.1103/PhysRevLett.82.2159
[19] O. Richoux, C. Depollier and J. Hardy, “Propagation of Mechanical Waves in a One-Dimensional Nonlinear Disordered Lattice,” Physical Review E, Vol. 73, No. 2, 2006, Article ID: 026611. doi:10.1103/PhysRevE.73.026611
[20] O. Richoux, C. Depollier, J. Hardy and A. Brezini, “Effects of Disorder and Nonlinearity on the Propagation of Classical Waves,” Journal of the Acoustical Society of America, Vol. 103, 1988, p. 2949. doi:10.1121/1.422232
[21] O. Richoux, “Thèse de Doctorat,” Université du Maine, Le Mans, 1999.
[22] J. Bellisard, A. Formoso, R. Lima and D. Testard, “Quasiperiodic Interaction with a Metal-Insulator Transition,” Physical Review B, Vol. 26, No. 30, 1982, pp. 3024-3030. doi:10.1103/PhysRevB.26.3024
[23] G. Theodorou and M. H. Cohen, “Extended States in a One-Demensional System with Off-Diagonal Disorder,” Physical Review B, Vol. 13, No. 10, 1982, pp. 4597-4601. doi:10.1103/PhysRevB.13.4597
[24] P. K. Datta and K. Kundu, “Energy Transport in One-Dimensional Harmonic Chains,” Physical Review B, Vol. 51, No. 10, 1995, pp. 6287-6295. doi:10.1103/PhysRevB.51.6287
[25] S. S. Albuquerque, F. A. B. F. de Moura and M. L. Lyra, “Vibrational Modes in Harmonic Chains with Diluted Disorder,” Physica A: Statistical Mechanics and Its Applications, Vol. 357, No. 1, 2005, pp. 165-172. doi:10.1016/j.physa.2005.05.059
[26] M. Hilke and J. C. Flores, “Delocalization in Continuous Disordered Systems,” Physical Review B, Vol. 55, No. 16, 1997, pp. 10625-10630. doi:10.1103/PhysRevB.55.10625
[27] C. M. Soukoulis, J. V. José, E. N. Economou and P. Sen, “Magneto-Polarons in a Two-Dimensional Electron Inversion Layer on InSb,” Physical Review Letters, Vol. 50, No. 10, 1983, pp. 754-757. doi:10.1103/PhysRevLett.50.754
[28] X. Huang, X, Wu and C. Gong, “Periodic Wave Functions and Number of Extended States in Random Dimer Systems,” Physical Review B, Vol. 55, No. 17, 1997, pp. 11018-11021. doi:10.1103/PhysRevB.55.11018
[29] M. Hilke, J. C. Flores and F. Dominguez-Adame, “Comment on ‘Periodic Wave Functions and Number of Extended States in Random Dimer Systems’,” Physical Review B, Vol. 58, No. 13, 1998, pp. 8837-8838. doi:10.1103/PhysRevB.58.8837
[30] T. Hakobyan, D, Hakobyan, A. Sedrakyan, I. Gomez and F. Dominguez-Adame, “Delocalization of States in Two-Component Superlattices with Correlated Disorder,” Physical Review B, Vol. 61, No. 17, 2000, pp. 11432-11436. doi:10.1103/PhysRevB.61.11432
[31] I. Gomez, F. Dominguez-Adame and E. Diez, “Nature of the Extended States in Random Dimer-Barrier Superlattices,” Physica B: Condensed Matte, Vol. 324, No. 1-4, 2002, pp. 235-239. doi:10.1016/S0921-4526(02)01319-4
[32] K. Ishii, “Localization of Eigenstates and Transport Phenomena in the One-Dimensional Disordered System,” Progress of Theoretical Physics Supplement, Vol. 53, 1973, pp. 77-138. doi:10.1143/PTPS.53.77
[33] S. Sil, S. N. Karmakar, R. K. Moitra and A. Chakrabarti, “Extended States in One-Dimensional Lattices: Application to the Quasiperiodic Copper-Mean Chain,” Physical Review B, Vol. 48, No. 6, 1993, pp. 4192-4195. doi:10.1103/PhysRevB.48.4192

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.