Accuracy of Rapid Prototyping Biomodels Plotted by Three Dimensional Printing Technique: Ex Vivo Study


The rapid prototyping biomodels manufacturing is a recent technology with great importance in oral and maxillofacial surgery. It provides a better surgical planning, decrease of anesthesia time and great functional and esthetic results. The aim of this experimental study was to evaluate the accuracy of rapid prototyping biomodels built by three-dimensional printing (3DP) technique, since this is one of the least expensive methods available. Linear measurements of standardized bone defects and anatomic distances were compared using a digital caliper of high precision in nine dry mandibles (gold standard) and their respective biomodels. The Bland-Altman test was used for statistical analysis (5% level of significance). The results showed strong concordance between the dry mandibles and their respective biomodels, with discrepancies smaller than 2 mmin most cases (97.4%). We can conclude that the biomodels built by 3DP technique can be used for surgical planning in Dentistry.

Share and Cite:

Safira, L. , Bastos, L. , Beal, V. , Azevedo, R. , Francischone, C. and Sarmento, V. (2013) Accuracy of Rapid Prototyping Biomodels Plotted by Three Dimensional Printing Technique: Ex Vivo Study. Advances in Computed Tomography, 2, 41-45. doi: 10.4236/act.2013.22008.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. Winder and R. Bibb, “Medical Rapid Prototyping Technologies: State of the Art and Current Limitations for Application in Oral and Maxillofacial Surgery,” Journal of Oral and Maxillofacial Surgery, Vol. 63, No. 7, 2005, pp. 1006-1015. doi:10.1016/j.joms.2005.03.016
[2] A. Suggar, R. Bibb, C. Morris and J. Parhouse, “The Development of a Collaborative Medical Modeling Service: Organizational and Technical Considerations,” British Journal of Oral and Maxillofacial Surgery, Vol. 42, No. 5, 2004, pp. 323-330. doi:10.1016/j.bjoms.2004.02.025
[3] J. V. L. Silva, M. F. Gouvêia, A. Santa Barbara, E. Meurer and C. A. C. Zavaglia, “Rapid Prototyping Applications in the Treatment of Craniomaxillofacial Deformities —Utilization of Bioceramics,” Key Engineering Materials, Vol. 254-256, 2004, pp. 687-690. doi:10.4028/
[4] E. L. S. Rosa, C. F. Oleskovicz and B. N. Aragao, “Rapid Prototyping in Maxillofacial Surgery and Traumatology: Case Report,” Brazilian Dental Journal, Vol. 15, No. 3, 2004, pp. 243-247. doi:10.1590/S0103-64402004000300015
[5] J. R. Cunnningham, M. J. Madsen and G. Peterson, “Stereolithographic Modeling Technology Applied to Tumor Resection,” Journal of Oral and Maxillofacial Surgery, Vol. 63, No. 6, 2005, pp. 873-879. doi:10.1016/j.joms.2005.02.027
[6] M. Robiony, I. Salvo, F. Costa, et al., “Virtual Reality Surgical Planning for Maxillofacial Distraction Osteogenesis: The Role of Reverse Engineering Rapid Prototyping and Cooperative Work,” Journal of Oral and Maxillofacial Surgery, Vol. 65, No. 6, 2007, pp. 1198-1208. doi:10.1016/j.joms.2005.12.080
[7] J. D. Wagner, B. Baack, G. A. Brown and J. Kelly, “Rapid 3-Dimensional Prototyping for Surgical Repair of Maxillofacial Fractures: A Technical Note,” Journal of Oral and Maxillofacial Surgery, Vol. 62, No. 7, 2004, pp. 898-890. doi:10.1016/j.joms.2003.10.011
[8] Y. Tang, H. T. Loh, J. Y. H. Fuh, et al., “Accuracy Analysis and Improvement for Direct Laser Sintering,” 2011.
[9] L. J. Stumpel, “Deformation of Stereolithographically Produced Surgical Guides: An Observational Case Series Report,” Clinical Implant Dentistry and Related Research, Vol. 14, No. 3, 2012, pp. 442-453. doi:10.1111/j.1708-8208.2010.00268.x
[10] P. S. Chang, T. H. Parker, C. W. Patrick Jr. and M. J. Miller, “The Accuracy of Stereolithography in Planning Craniofacial Bone Replacement,” Journal of Craniofacial Surgery, Vol. 14, No. 2, 2003, pp. 164-170. doi:10.1097/00001665-200303000-00006
[11] D. N. Silva, M. G. de Oliveira, E. Meurer, M. I. Meurer, J. V. L. Silva and A. S. Barbara, “Dimensional Error in Selective Laser Sintering and 3D-Printing of Models for Craniomaxillary Anatomy Reconstruction,” Journal of Cranio-Maxillofacial Surgery, Vol. 36, No. 8, 2008, pp. 443-449. doi:10.1016/j.jcms.2008.04.003
[12] N. Kitai, Y. Yoshitaka and T. Kenji, “A Stent Fabricated on a Selectively Colored Stereolithographic Model for Placement of Orthodontic Mini-Implants,” The International Journal of Adult Orthodontics & Orthognathic Surgery, Vol. 17, No. 4, 2002, pp. 264-266.
[13] J. Chow, E. Hui, P. K. Lee and W. Li, “Zygomatic Implants—Protocol for Immediate Occlusal Loading: A Preliminary Report,” Journal of Oral and Maxillofacial Surgery, Vol. 64, No. 5, 2006, pp. 804-811. doi:10.1016/j.joms.2006.01.021
[14] G. A. Di Giacomo, P. R. Cury, N. S. de Araujo, W. R. Sendyk and C. L. Sendyk, “Clinical Application of Stereolithographic Guides for Implant Placement: Preliminary Results,” Journal of Periodontology, Vol. 76, No. 4, 2005, pp. 503-507. doi:10.1902/jop.2005.76.4.503
[15] J. Y. Choi, J. H. Choi, N. K. Kim, et al., “Analysis of Errors in Medical Rapid Prototyping Models,” International Journal of Oral and Maxillofacial Surgery, Vol. 31, No. 1, 2002, pp. 23-32. doi:10.1054/ijom.2000.0135
[16] J. Kragskov, S. Sindet-Pedersen, C. Gyldensted and K. L. Jensen, “A Comparison of Three-Dimensional Computed Tomography Scans and Stereolithographic Models for Evaluation of Craniofacial Anomalies,” Journal of Oral and Maxillofacial Surgery, Vol. 54, No. 4, 1996, pp. 402411. doi:10.1016/S0278-2391(96)90109-3
[17] J. Asaumi, N. Kawai, Y. Honda, H. Shigehara, T. Wakasa and K. Kishi, “Comparison of Three-Dimensional Computed Tomography with Rapid Prototype Models in the Management of Coronoid Hyperplasia,” Dentomaxillofacial Radiology, Vol. 30, 2001, pp. 330-335. doi:10.1038/sj.dmfr.4600646
[18] E. G. Ferraz, L. C. S. Andrade, A. R. dos Santos, V. R. Torregrossa, M. R. S. Freire and V. A. Sarmento, “Effect of Different Surface Processing Protocols in Three-Dimensional Images for Rapid Prototyping,” Advances in Engineering Software, Vol. 42, No. 6, 2011, pp. 332-335. doi:10.1016/j.advengsoft.2011.02.011

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.