Peripheral tolerance of antigen-specific Th cells induced with polyethylene glycol-conjugate of protein antigen


It has long been known that protein antigen conjugated with polyethylene glycol (PEG), a nonimmunogenic artificial polymer, induces immune tolerance of antigen-specific Th cells. However, the mechanism of this tolerance induction remains unknown. In this study, the response and differentiation of ovalbumin (OVA)-specific CD4+ Th cells upon exposure to tolerogenic PEG conjugate of OVA (PEG-OVA) were studied. Na?ve OVA-specific Th cells from OT-II mice were labeled with carboxyfluorescein succinimidyl ester (CFSE), transferred into histocompatible C57BL/6 mice, and then subsequently stimulated with either tolerogenic PEG-OVA or with OVA. Upon stimulation with tolerogenic PEG-OVA in vivo, these cells showed a robust proliferative response comparable to that observed by stimulation with OVA. Nevertheless, upon prolonged exposure to PEG-OVA, OVA-specific Th cells became anergic, showing a markedly reduced capacity to respond, and to produce IL-2 and other cytokines when stimulated with antigenic OVA323-339 peptide in vitro. There was also a significant reduction of the frequency of clonotypic TCR Vα2+CD4+ T cells in the spleens of OT-II mice treated with PEG-OVA. These features of response of na?ve OVA-specific Th cells upon sustained exposure to PEG-OVA were quite analogous to those reported for the same cells transferred into mice with systemic expression of the transgenic OVA gene. The highly enhanced stability in the circulation that was observed for PEG-OVA was likely the basis of its tolerogenic capacity.

Share and Cite:

Obata, M. , Fujii, T. , Ohtsuji, M. , Kodera, Y. and Nishimura, H. (2013) Peripheral tolerance of antigen-specific Th cells induced with polyethylene glycol-conjugate of protein antigen. Open Journal of Immunology, 3, 62-70. doi: 10.4236/oji.2013.32010.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Israelachvili, J. (1997) The different faces of poly (ethylene glycol). Proceedings of the National Academy of Sciences of the United States of America, 94, 5 August 1997, 8378-8379. doi:10.1073/pnas.94.16.8378
[2] Chen, J., Spear, S.K., Huddleston, J.G., Holbrey, J.D. and Rogers, R.D. (2004) Application of polyethylene glycol-based aqueous biphasic reactive extraction to the catalytic oxidation of cyclic olefins. Journal of chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 807, 145-149. doi:10.1016/j.jchromb.2004.01.047
[3] Kozlowski, A. and Harris, J.M. (2001) Improvements in protein PEGylation: Pegylated interferons for treatment of hepatitis C. Journal of Controlled Release, 72, 217-224. doi:10.1016/S0168-3659(01)00277-2
[4] Kamisaki, Y., Wada, H., Yagura, T., Nishimura, H., Matsushima, A. and Inada, Y. (1982) Increased antitumor activity of Escherichia coli. L-asparaginase by modification with monomethoxy-polyethylene glycol. Gann, 73, 470-474.
[5] Yoshimoto, T., Nishimura, H., Saito, Y., Sakurai, K., Kamisaki, Y., Wada, H., Sako, M., Tsujino, G. and Inada, Y. (1986) Characterization of polyethylene glycol-modified L-asparaginase from Escherichia coli and its application to therapy of leukemia. Japanese Journal of Cancer Research, 77, 1264-1270.
[6] Foster, G.R. (2010) Pegylated interferrons for the treatment of chronic hepatitis C: pharmacological and clinical dirrerences between peginterferon-alpha-2a and peginterferon-alpha-2b. Drugs, 70, 147-165. doi:10.2165/11531990-000000000-00000
[7] Lee, W.Y. and Sehon, A.H. (1977) Abrogation of reaginic antibodies with modified allergens. Nature, 267, 618-619. doi:10.1038/267618a0
[8] Lee, W.Y. and Shehon, A. H. (1978) Suppression of reaginic antibodies. Immunological Review, 41, 200-247. doi:10.1111/j.1600-065X.1978.tb01466.x
[9] Sehon, A.H. and Lee, W.Y. (1979) Suppression of immunoglobulin E antibodies with modified allergens. Journal of Allergy and Clinical Immunology, 64, 242-250. doi:10.1016/0091-6749(79)90139-8
[10] Dreborg, S. and Akerblom, E.B. (1990) Immunotherapy with monome-thoxypolyethylene glycol modified allergens. Current Reviews in Therapeutic Drug Carrier Systems, 6, 315-365.
[11] Barnden, M.J., Allison, J., Heath, W.R. and Carbone, F.R. (1998) Defective TCR expression in transgenic mice constructed using cDNA-based alpha- and beta-chain genes under the control of heterologous regulatory elements. Immunology & Cell Biology, 76, 34-40. doi:10.1046/j.1440-1711.1998.00709.x
[12] Saito, T., Nishimura, H., Sekine, T., Urushibara, T., Kodera, Y., Hiroto, M., Matsushima, A. and Inada, Y. (1996) Tolerogenic capacity of poly(ethylene glycol) (PEG)-modified ovalbumins in relation to their immunoreactivity towards anti-ovalbumin antibody. Journal of Biomaterials Science, Polymer Edition, 8, 311-321. doi:10.1163/156856296X00327
[13] Ono, K., Kai, Y., Maeda, H., Samizo, F., Sakurai, K., Nishimura, H. and Inada, Y. (1991) Selective synthesis of 2, 4-bis(O-methoxypolyethylene glycol)-6-chloro-s-triazine as a protein modifier. Journal of Biomaterials Science, Polymer Edition, 2, 61-65. doi:10.1163/156856291X00061
[14] Layne, E. (1957) Spectrophotometric and turbidimetric methods for measuring proteins. Methods in Enzymology, 3, 447-453. doi:10.1016/S0076-6879(57)03413-8
[15] Habeeb, A.F. (1966) Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Analytical Biochemistry, 14, 328-336. doi:10.1016/0003-2697(66)90275-2
[16] Quah, B.J., Warren, H.S. and Parish, C.R. (2007) Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nature Protocols, 2, 2049-2056. doi:10.1038/nprot.2007.296
[17] McFarland, B.J., Sant, A.J., Lybrand, T.P. and Beeson, C. (1999) Ovalbumin (323-339) peptide binds to the major histocompatibility complex class II I-A(d) protein using two functionally distinct registers. Biochemistry, 38, 16663-16670. doi:10.1021/bi991393l
[18] Perros, P. and Weightman, D.R. (1991) Measurement of cell proliferation by enzyme-linked immunosorbent assay (ELISA) using a monoclonal antibody to bromodeoxyuridine. Cell Proliferation, 24, 517-523. doi:10.1111/j.1365-2184.1991.tb01179.x
[19] Voller, A., Bartlett, A. and Bidwell, D.E. (1978) Enzyme immunoassays with special reference to ELISA techniques. Journal of Clinical Pathology, 31, 507-520. doi:10.1136/jcp.31.6.507
[20] Hummon, A.B., Lim, S.R., Difilippantonio, M.J. and Ried, T. (2007) Isolation and solubilization of proteins after TRIzol extraction of RNA and DNA from patient material following prolonged storage. Biotechniques, 42, 467-470, 472. doi:10.2144/000112401
[21] Zipper, H., Brunner, H., Bernhagen, J. and Vitzthum, F. (2004) Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Research, 32, e103. doi:10.1093/nar/gnh101
[22] Fuse, A., Fujita, T., Yasumitsu, H., Kashima, N., Hasegawa, K. and Taniguchi, T. (1984) Organization and structure of the mouse interleukin-2 gene. Nucleic Acids Research, 12, 9323-9331. doi:10.1093/nar/12.24.9323
[23] Otsuka, T., Villaret, D., Yokota, T., Takebe, Y., Lee, F., Arai, N. and Arai, K. (1987) Structural analysis of the mouse chromosomal gene encoding interleukin 4 which expresses B cell, T cell and mast cell stimulating activeties. Nucleic Acids Research, 15, 333-344. doi:10.1093/nar/15.1.333
[24] Gray, P.W. and Goeddel, D.V. (1983) Cloning and expression of murine immune interferon cDNA. Proceedings of the National Academy of Sciences of the United States of America, 80, 5842-5846. doi:10.1073/pnas.80.19.5842
[25] Moore, K.W., Vieira, P., Florentino, D.F., Trounstine, M.L., Khan, T.A. and Mosmann, T.R. (1990) Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein-Barr virus gene BCRFI. Science, 250, 494.
[26] Kennedy, J., Rossi, D.L., Zurawski, S.M., Vega, F., Jr., Kastelein, R.A., Wagner, J.L., Hannum, C.H. and Zlotnik, A. (1996) Mouse IL-17: A cytokine preferentially expressed by alpha beta TCR+ CD4- CD8- T cells. Journal of Interferon & Cytokine Research, 16, 611-617. doi:10.1089/jir.1996.16.611
[27] Weigle, W.O. (1977) Immunologic tolerance and immunopathology. Hospital Practice, 12, 71-80. doi:10.1016/0092-8674(88)90558-2
[28] Conlon, P. and Steinman, L. (2002) Altered peptide ligands and MS treatment. Science, 296, 1801-1802.
[29] Acha-Orbea, H., Mitchell, D.J., Timmermann, L., Wraith, D.C., Tausch, G.S., Waldor, M.K., Zamvil, S.S., McDevitt, H.O. and Steinman, L. (1988) Limited heterogeneity of T cell receptors from lymphocytes mediating autoimmune encephalomyelitis allows specific immune intervention. Cell, 54, 263-273.
[30] Steinman, R.M., Hawiger, D. and Nussenzweig, M.C. (2003) Tolerogenic dendritic cells. Annual Review of Immunology, 21, 685-711. doi:10.1146/annurev.immunol.21.120601.141040
[31] Starr, T.K., Jameson, S.C. and Hogquist, K.A. (2003) Positive and negative selection of T cells. Annual Review of Immunology, 21, 139-176. doi:10.1146/annurev.immunol.21.120601.141107
[32] Reinhardt, R.L., Kang, S.J., Liang, H.E. and Locksley, R.M. (2006) T helper cell effector fates—who, how and where? Currrent Opinion in Immunology, 18, 271-277. doi:10.1016/j.coi.2006.03.003
[33] Sakaguchi, S., Yamaguchi, T., Nomura, T. and Ono, M. (2008) Regulatory T cells and immune tolerance. Cell, 133, 775-787.
[34] Chen, Y., Takata, M., Maiti, P.K., Rector, E.S. and Sehon, A.H. (1992) Characterization of suppressor T cell clones derived from a mouse tolerized with conjugates of ovalbumin and monomethoxypolyethylene glycol. Cellular Immunology, 142, 16-27. doi:10.1016/0008-8749(92)90265-Q
[35] Chen, Y., Takata, M., Maiti, P.K., Mohapatra, S., Mohapatra, S.S. and Sehon, A.H. (1994) The suppressor factor of T suppressor cells induced by tolerogenic conjugates of ovalbumin and monomethoxypolyethylene glycol is serologically and physicochemically related to the alpha beta heterodimer of the T cell receptor. The Journal of Immunology, 152, 3-11.
[36] Barron, L., Knoechel, B., Lohr, J. and Abbas, A.K. (2008) Cutting edge: Contributions of apoptosis and anergy to systemic T cell tolerance. The Journal of Immunology, 180, 2762-2766.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.