Radon exhalation from phosphogypsum stabilized in sulfur polymer cement

Abstract

Phosphogypsum (PG), primary by-product from phosphoric acid production, is accumulated in large stock-piles which were active until 2010, when spills were banned. It is considered as NORM material that contains radionuclides from 238U and decay series which are of most radiotoxicity. PG was valorized and/or recycled in a building material, sulfur polymer cement (SPC). The SPC-PG samples reach the international regulation to use in the manufacture of building materials without radiological restrictions, except the sample with the 50% of PG. Under normal conditions of ventilation the contribution to the expected radon indoor concentration is also below the international recommendation.

Share and Cite:

García-Diaz, I. , Alguacil, F. , Gázquez, M. , Bolivar, J. , Coto, I. and López, F. (2013) Radon exhalation from phosphogypsum stabilized in sulfur polymer cement. Natural Science, 5, 646-652. doi: 10.4236/ns.2013.55080.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Landa, E.R. (2007) Naturally occurring radionuclides from industrial sources: Characteristic and fate in the environment. Radioactivity in the Environment, 10, 121-237.
[2] Fertiberia (2002) Documentation on the industrial process at the Huelva phosphoric acid production plant. Fertiberia, S.A. (in Spanish).
[3] Bolivar, J.P., Martín, J.E., García-Tenorio, R., Pérez-Moreno, J.P. and Mas J.L. (2009) Behaviour and fluxes of natural raionuclides in the production process of a phosphoric acid plant. Applied Radiation and Isotopes, 67, 345-356. doi:10.1016/j.apradiso.2008.10.012
[4] Renteria-Villalobos, M., Vioque, I., Mantero, J. and Majón, G. (2010) Radiological, chemical and morphological characterization of phosphate rock and phosphogypsum from phosphoric acid factories in SW Spain. Journal of Hazardous Materials, 182, 193-203. doi:10.1016/j.jhazmat.2010.04.116
[5] Lardinoye, M.H, Weterings, K. and Van der Bergn, W.B. (1982) Unexpected Ra-226 build up in wet phosphoricacids plants. Health Physics, 42, 503-514. doi:10.1097/00004032-198204000-00011
[6] Rutherford, P.M., Dudas, M.J. and Arocena, J.M. (1996) Heterogeneous distribution of radionuclides, barium and strontium in phosphogypsum by-products. The Science of the Total Environment, 180, 201-209. doi:10.1016/0048-9697(95)04939-8
[7] Papastefanou, C., Stoulos, S. and Monolopoulu, M. (2005) The radioactivity of building materials. Journal of Radionalytical and Nuclear Chesmistry, 266, 367-372. doi:10.1007/s10967-005-0918-z
[8] El Afifi, E.M., Hilal, M.A., Khalifa, S.M. and Aly, H.F. (2006) Evaluation of U, Th, K and emanated radon in some NORM and TENORM samples. Radiation Measurements, 41, 627-633. doi:10.1016/j.radmeas.2005.09.014
[9] El-Didamony, H., Gado, H.S., Awwad, N.S., Fawzy, M.M. and Attallah, M.F. (2013) Treatment of phosphogypsum waste produced from phosphate ore processing. Journal of Hazardous Materials, 244-245, 596-602. doi:10.1016/j.jhazmat.2012.10.053
[10] Tayibi, H., Choura, M., López, F.A., Alguacil, F.J. and López-Delgado, A. (2009) Environmental impact and management of phosphogypsum. Journal Environmental Management, 90, 2377-2386. doi:10.1016/j.jenvman.2009.03.007
[11] Somlai, J., Jobbágy, V., Kovács, J., Tarján, S. and Kovács, T. (2008) Radiological aspects of the usability of red mud as building material additive. Journal of hazardous Materials, 150, 541-545. doi:10.1016/j.jhazmat.2007.05.004
[12] Puertas, F., García-Díaz, I., Barba, A., Gazulla, M.F., Palacios, M., Gómez, M.P. and Martínez-Ramírez, S. (2008) Ceramic wastes as alternative raw materials for Portland cement clinker production. Cement and Concrete Composite, 30, 798-805. doi:10.1016/j.cemconcomp.2008.06.003
[13] Klover, K. (2009) Radiological constrains of using building materials and industrial by-products in construction. Construction and Building Materials, 23, 246-253. doi:10.1016/j.conbuildmat.2007.12.010
[14] Szabó, Zs., Volgyesi, P., Nagy, H.E., Szabó, Cs., Kis, Z. and Csorba, O. (2013) Radioactivity of natural and artificial building materials—A comparative study. Journal of Environmental Radioactivity, 118, 6474. doi:10.1016/j.jenvrad.2012.11.008
[15] Deng-Liang, H. Guang-Fu, Y., Fa-Quin, D., Lai-Bao, L. and Ya-Jun, L. (2010) Research on the additives to reduce radioactive pollutants in the building materials containing fly ash. Journal Hazardous Materials, 177, 573-581. doi:10.1016/j.jhazmat.2009.12.071
[16] Sheng-Lung, L., Lai, S.J. and Chian, E.S.K. (1995) Modifications of sulfur polymer cement (SPC) stabilization and solidifications (S/S) process. Waste management, 15, 441-447.
[17] EC (1999) Office European Commission Report on Radiological Protection Principles concerning the natural radioactive of building materials, Radiation Protection 112, Official Publications of the European Communities, Luxembourg.
[18] Perez Moreno, P., San Miguel, E.G., Bolivar, J.P. and Aguado, J.L. (2002) A comprehensive calibration method of Ge detector for low level spectrometry measurement. Nuclear Instruments and Methods in Physic Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 491, 152-162. doi:10.1016/S0168-9002(02)01165-8
[19] López-Coto, I., Mas, J.L., Bolivar, J.P. and García-Tenorio, R. (2009) A short time method to measure the radon potential of porous materials. Applied Radiation and Isotopes, 67, 133-138. doi:10.1016/j.apradiso.2008.07.015
[20] STARTcreteTM Technologies INC (2000) Labortory Procedure for Producing STARcretesTM Test Specimens. Technical Report.
[21] López, F.A., Gázquez, M., Alguacil, F.J., Bolívar J.P., García-Díaz, I. and López Coto, I. (2011) Microencapsulation of phosphogypsum into a sulfur polymer matrix: Physico-chemical and radiological characterization. Journal of Hazardous Materials, 192, 234-245.
[22] Sandrolini, F., Manzi S. and Andrucci A. (2006) Sulfurpolymer matrix composites from particulate waste: A sustainable route to advanced materials. Composite Part A: Applied Science and Manufacturing, 37, 695-702. doi:10.1016/j.compositesa.2005.07.004
[23] Lembrechts, J., Janssen, M. and Stoop, P. (2001) Ventilation and radon transport in Dutch dwellings computer modeling and field measurement. Science of the Total Environment, 272, 73-78. doi:10.1016/S0048-9697(01)00667-2
[24] Perez-López, R., Nieto, J.M., López-Coto, I., Aguado, J.L., Bolivar, J.P. and Santisteban, M. (2010) Dynamics of contaminants of phosphogypsum or the fertilizer industry of Huelva (SW Spain): From phosphate rock ore to the environment. Applied Geochemistry, 25, 705-715. doi:10.1016/j.apgeochem.2010.02.003
[25] UNSCEAR (1993) sources and effects of ionizing radiation-United Nations Scientific Committee on the effects of Atomic Radiation, UNSCEAR 1993 Report to the General Assembly with Scientific Annexes, New York.
[26] López Coto, I., Mas, J.L., San Migel, E.G., Bolivar, J.P. and Sengugta D. (2009) A comparison between active and passive techniques for measurements of radon emanation factors. Applied Radiation and Isotopes, 67, 849-853. doi:10.1016/j.apradiso.2009.01.045
[27] Magded, A.F. and Ashraf, F.A. (2005) Radon exhalation rate of some building materials used in Egypt. Environmental Geochemistry and Health, 27, 485-489. doi:10.1007/s10653-005-5332-5
[28] Ackers, J.G., Den Boer, J.F., De Jong, P. and Wolschrijn, R.A. (1985) Radioactivity and radon exhalation rates of building materials in The Netherlands. Science of the Total Environment, 45(C), 151-156. doi:10.1016/0048-9697(85)90215-3
[29] Pereira, C.E., Vaidyan, V.K., Jojo, P.J. and Ramachandran, T.V. (2008) Measurement of radon exhalation rate from building materials used in the southwest coastal region of India. Indoor and Built Environment, 17, 472-475. doi:10.1177/1420326X08095830

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.