Scientific Research

An Academic Publisher

Inverse Problems on Cirtical Number in Finite Groups ()

Let G be a finite nilpotent
group of odd order and S be a subset of G\{0}. We say that S is **complete** if every element of G can be represented as
a sum of different elements of S and **incomplete **otherwise. In this paper, we
obtain the characterization of large incomplete sets.

Share and Cite:

Q. Wang and J. Zhuang, "Inverse Problems on Cirtical Number in Finite Groups,"

*Open Journal of Discrete Mathematics*, Vol. 3 No. 2, 2013, pp. 93-96. doi: 10.4236/ojdm.2013.32018.Conflicts of Interest

The authors declare no conflicts of interest.

[1] | P. Erdõs and H. Heibronn, “On the Addition of Residue Classes Mod p,” Acta Arithmetica, Vol. 9, 1964, pp. 149- 159. |

[2] | J. A. Dias da Silva and Y. O. Hamidoune, “Cyclic Spaces for Grassmann Derivatives and Additive Theory,” Bulletin London Mathematical Society, Vol. 26, No. 2, 1994, pp. 140-146. doi:10.1112/blms/26.2.140 |

[3] | G. T. Diderrich, “An Addition Theorem for Abelian Groups of Order pq,” Journal of Number Theory, Vol. 7, No. 1, 1975, pp. 33-48. doi:10.1016/0022-314X(75)90006-2 |

[4] | J. E. Olson, “An Addition Theorem Mod p,” Journal of Combinatorial Theory, Vol. 5, No. 1, 1968, pp. 45-52. doi:10.1016/S0021-9800(68)80027-4 |

[5] | W. Gao and Y. O. Hamidoune, “On Additive Bases,” Acta Arithmetica, Vol. 88, 1999, pp. 233-237. |

[6] | H. B. Mann and Y. F. Wou, “An Addition Theorem for the Elementary Abelian Group of Type (p,p),” Monatshefte für Mathematik, Vol. 102, No. 4, 1986, pp. 273-308. doi:10.1007/BF01304301 |

[7] | M. Freeze, W. D. Gao and A. Geroldinger, “The Critical Number of Finite Abelian Groups,” Journal of Number Theory, Vol. 129, No. 11, 2009, pp. 2766-2777. doi:10.1016/j.jnt.2009.05.016 |

[8] | Q. H. Wang and J. J. Zhuang, “On the Critical Number of Finite Groups of Order pq,” International Journal of Number Theory, Vol. 8, No. 5, 2012, pp. 1271-1280. doi:10.1142/S1793042112500741 |

[9] | J. R. Griggs, “Spanning Subset Sums for Finite Abelian Groups,” Discrete Mathematics, Vol. 229, No. 1-3, 2001, pp. 89-99. doi:10.1016/S0012-365X(00)00203-X |

[10] | Q. H. Wang and Y. K. Qu, “On the Critical Number of Finite Groups (II),” Ars Combinatoria, Accepted for Publication in December 2009, to Appear. |

[11] | W. Gao, Y. O. Hamidoune, A. Llad and O. Serra, “Covering a Finite Abelian Group by Subset Sums,” Combinatorica, Vol. 23, No. 4, 2003, pp. 599-611. doi:10.1007/s00493-003-0036-x |

[12] | V. H. Vu, “Structure of Large Incomplete Sets in Finite Abelian Groups,” Combinatorica, Vol. 30, No. 2, 2010, pp. 225-237. doi:10.1007/s00493-010-2336-2 |

[13] | D. Guo, Y. K. Qu, G. Q. Wang and Q. H. Wang, “Extremal Incomplete Sets in Finite Abelian Groups,” Ars Combinatoria, Accepted for Publication in December 2011, to Appear. |

[14] | H. B. Mann, “Addition Theorems,” 2nd Edition, R. E. Krieger, New York, 1976. |

[15] | J. E. Olson, “Sum of Sets of Group Elements,” Acta Arithmetica, Vol. 28, No. 76, 1975, pp. 147-156. |

[16] | Y. O. Hamidoune, “Adding Distinct Congruence Classes,” Combinatorics, Probability and Computing, Vol. 7, No. 1, 1998, pp. 81-87. doi:10.1017/S0963548397003180 |

Copyright © 2020 by authors and Scientific Research Publishing Inc.

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.