} else { } } }; xhrj.open('GET', encodeURI(sUrl), bAsync); xhrj.send('Null'); } } function RndNum(n) { var rnd = ""; for (var i = 0; i < n; i++) rnd += Math.floor(Math.random() * 10); return rnd; } function SetNum(item) { var url = "//www.scirp.org/journal/senddownloadnum.aspx"; var args = "paperid=" + item; url = url + "?" + args + "&rand=" + RndNum(4); window.setTimeout("show('" + url + "')", 3000); } function show(url) { var callback = function (xhrj) { } ajaxj.get(url, true, callback, "try"); } // function SetNumTwo(item) { // alert("jinlia"); // var url = "../userInformation/PDFLogin.aspx"; // var refererrurl = document.referrer; // var downloadurl = window.location.href; // var args = "PaperID=" + item + "&RefererUrl=" + refererrurl + "&DownloadUrl="+downloadurl; // url = url + "?" + args + "&rand=" + RndNum(4); // //// window.setTimeout("show('" + url + "')", 500); // } // function pdfdownloadjudge() { // $("a").each(function(index) { // var rel = $(this).attr("rel"); // if (rel == "true") { // $(this).removeAttr("onclick"); // $(this).attr("href","#"); // //$(this).bind('click', function() { SetNumTwo(25500)}); // var url = "../userInformation/PDFLogin.aspx"; // var refererrurl = document.referrer; // var downloadurl = window.location.href; // var args = "PaperID=" + 25500 + "&RefererUrl=" + refererrurl + "&DownloadUrl=" + downloadurl; // url = url + "?" + args + "&rand=" + RndNum(4); // // $(this).bind('click', function() { ShowTwo(url)}); // } // }); // } // //获取下载pdf注册的cookie // function getcookie() { // var cookieName = "pdfddcookie"; // var cookieValue = null; //返回cookie的value值 // if (document.cookie != null && document.cookie != '') { // var cookies = document.cookie.split(';'); //将获得的所有cookie切割成数组 // for (var i = 0; i < cookies.length; i++) { // var cookie = cookies[i]; //得到某下标的cookies数组 // if (cookie.substring(0, cookieName.length + 2).trim() == cookieName.trim() + "=") {//如果存在该cookie的话就将cookie的值拿出来 // cookieValue = cookie.substring(cookieName.length + 2, cookie.length); // break // } // } // } // if (cookieValue != "" && cookieValue != null) {//如果存在指定的cookie值 // return false; // } // else { // // return true; // } // } // function ShowTwo(webUrl){ // alert("22"); // $.funkyUI({url:webUrl,css:{width:"600",height:"500"}}); // } //window.onload = pdfdownloadjudge;
OJFD> Vol.2 No.4, December 2012
Share This Article:
Cite This Paper >>

Numerical Study on the Effect of Unsteady Downstream Conditions on Hydrogen Gas Flow through a Critical Nozzle

Abstract Full-Text HTML Download Download as PDF (Size:1739KB) PP. 137-144
DOI: 10.4236/ojfd.2012.24014    3,554 Downloads   6,179 Views  
Author(s)    Leave a comment
Junji Nagao, Shigeru Matsuo, Toshiaki Setoguchi, Heuy Dong Kim

Affiliation(s)

Department of Mechanical Engineering, Saga University, Saga, Japan.
Graduate School of Science and Engineering, Saga University, Saga, Japan.
Institute of Ocean Energy, Saga University, Saga, Japan.
School of Mechanical Engineering, Andong National University, Andong, Korea.

ABSTRACT

A critical nozzle (sonic nozzle) is used to measure the mass flow rate of gas. It is well known that the coefficient of discharge of the flow in the nozzle is a single function of Reynolds number. The purpose of the present study is to investigate the effect of unsteady downstream condition on hydrogen gas flow through a sonic nozzle, numerically. Navier-Stokes equations were solved numerically using 3rd-order MUSCL type TVD finite-difference scheme with a second-order fractional-step for time integration. A standard k-ε model was used as a turbulence model. The computational results showed that the discharge coefficients in case without pressure fluctuations were in good agreement with experimental results. Further, it was found that the pressure fluctuations tended to propagate upstream of nozzle throat with the decrease of Reynolds number and an increase of amplitude of pressure fluctuations.

KEYWORDS

Compressible Flow; Critical Nozzle; Pressure Fluctuation; Measurement; Supersonic Flow

Cite this paper

J. Nagao, S. Matsuo, T. Setoguchi and H. Kim, "Numerical Study on the Effect of Unsteady Downstream Conditions on Hydrogen Gas Flow through a Critical Nozzle," Open Journal of Fluid Dynamics, Vol. 2 No. 4, 2012, pp. 137-144. doi: 10.4236/ojfd.2012.24014.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. P. Tang and J. B. Fenn, “Experimental Determination of the Discharge Coefficients for Critical Flow through an Axisymmetric Nozzle,” The American Institute of Aeronautics and Astronautics Journal, Vol. 16, No. 1, 1978, pp. 41-46. doi:10.2514/3.60854
[2] S. Nakao, Y. Yokoi and M. Takamoto, “Development of a Calibration Facility for Small Mass Flow Rates of Gas and Uncertainty of a Sonic Venturi Transfer Standard,” Flow Measurement and Instrumentation, Vol. 7, No. 2, 1996, pp. 77-83. doi:10.1016/S0955-5986(97)00006-X
[3] S. Nakao, T. Irayama and M. Takamoto, “Relations between the Discharge Coefficients of the Sonic Venturi Nozzle and Kind of Gases,” Journal of the Japan Society of Mechanical Engineers, Series B, Vol. 66, No. 642, 2000, pp. 438-444.
[4] R. C. Johnson, “Real Gas Effects in Critical-Flowthrough Nozzles and Tabulated Thermodynamic Properties,” NASA TN D-2565, 1965.
[5] R. D. McCarty and L. A. Weber, “Thermophysical Properties of Parahydrogen from the Freezing Liquid Line to 5000R for Pressures to 10,000 Psia,” NBS TN 617, 1972.
[6] R. D. McCarty, J. Hord and H. M. Roder, “Selected Properties of Hydrogen (Engineering Design Data),” NBS MN 168, 1981.
[7] R. D. McCarty, “Hydrogen Technological Surveythermophysical Properties,” NASA SP 3089, 1975.
[8] H. D. Kim, J. H. Kim, K. A. Park, T. Setoguchi and S. Matsuo, “Computational Study of the Gas Flow through a Critical Nozzle,” Proceedings of the Institution of Mechanical Engineers. Part C, Journal of Mechanical Engineering Science, Vol. 217, No. 10, 2003, pp. 1179-1189.
[9] H. D. Kim, K. Matsuo, S. Kawagoe and T. Kinoshita, “Flow Unsteadiness by Weak Normal Shock Wave/Turbulent Boundary Layer Interaction in Internal Flow,” JSME International Journal. Series 2, Fluids Engineering, Heat Transfer, Power, Combustion, Thermophysical Properties, Vol. 34, No. 4, 1991, pp. 457-465.
[10] K. Matsuo, Y. Miyazato and H. D. Kim, “Shock Train and Pseuedo-Shock Phenomena in Internal Gas Flows,” Progress in Aerospace Sciences, Vol. 35, No. 1, 1999, pp. 33-100. doi:10.1016/S0376-0421(98)00011-6
[11] E. Von Lavante, A. Zachcizl, B. Nath and H. Dietrich, “Unsteady Effects in Critical Nozzles Used for Flow Metering,” Measurement, Vol. 29, No. 1, 2001, pp. 1-10. doi:10.1016/S0263-2241(00)00021-X
[12] H. D. Kim, J. H. Kim, K. A. Park, T. Setoguchi and S. Matsuo, “Study of the Effects of Unsteady Downstream Conditions on the Gas Flow through a Critical Nozzle,” Proceedings Institution of Mechanical Engineers. Part C: Journal of Mechanical Engineering Science, Vol. 218, No. 10, 2004, pp.1163-1173.
[13] J. Nagao, S. Matsuo, T. Setoguchi and H. D. Kim, “Effect of Unsteady Downstream Conditions on the Gas Flow through a Supersonic Nozzle,” International Journal of Turbo and Jet Engines, Vol. 27, No. 2, 2009, pp.95-108. doi:10.1515/TJJ.2010.27.2.95
[14] J. Nagao, M. Mamun, S. Matsuo, T. Hashimoto, S. Toshiaki and H. D. Kim, “Numerical Study of Air Gas Flow through a Critical Nozzle,” International Journal of Turbo and Jet Engines, Vol. 26, No. 4, 2009, pp.223-234. doi:10.1515/TJJ.2009.26.4.223
[15] B. E. Launder and D. B. Spalding, “The Numerical Computation of Turbulent Flows,” Computer Methods in Applied Mechanics and Engineering, Vol. 3, No. 2, 1974, pp. 269-289. doi:10.1016/0045-7825(74)90029-2
[16] S. Sarkar and L. Balakrishnan, “Application of a Reynolds Stress Turbulence Model to the Compressible Shear Layer,” NASA CR 182002, 1990.
[17] D. C. Wilcox, “Turbulence Modeling for CFD,” 3rd Edition, DCW Industries, Inc., La Canada, 2006.
[18] H. C. Yee, “A Class of High-Resolution Explicit and Implicit Shock Capturing Methods,” NASA TM-89464, 1989.
[19] ISO 9300, “Measurement of Gas Flow by Means of Critical Flow Venturi Nozzles,” 1990.
[20] S. Nakao, “A Study on the Conversion Factor of Sonic Venturi Nozzles,” AIST Bulletin of Metrology, Vol. 1, No. 2, 2002, pp. 387-405.

  
comments powered by Disqus
OJFD Subscription
E-Mail Alert
OJFD Most popular papers
Publication Ethics & OA Statement
OJFD News
Frequently Asked Questions
Recommend to Peers
Recommend to Library
Contact Us

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.