Effects of Side-Chain on Conformational Characteristics of Poly(3,5-Dimethyl-Phenyl Acrylate) in Toluene at 40℃

Abstract

The intrinsic viscosity [η] of poly(3,5-dimethylphenylacrylate) (35PDMPA)solutions were evaluated throughout the measurements of the flow times of toluene and polymer solutions by classical Huggins, and Kraemer’s methods using a Cannon-Ubbelohde semi-micro-dilution capillary viscometer in a Cannon thermostated water bath at 40℃ ± 0.02℃. The values of Huggins’ constant estimated ranged from 0.2 to 0.4 which were within expectations. The intrinsic viscosities and molecular weight relationship was established with the two-parameter classical models of Staudinger-Mark-Houwink-Sakurada and Stockmayer-Fixman. Conformational parameter C and σ indicated 35PDMPA be semi flexible. Also, the rigidity of 35PDMPA was confirmed by Yamakawa-Fuji wormlike theory modified by Bohdanecky. The molecular parameters were estimated and compared. The results showed that 35PDMPA behaves like a semi-rigid polymer in toluene at 40℃ rather than a random coil flexible macromolecule.

Share and Cite:

N. Hamidi, S. Ihekweazu, C. A. Wiredu, O. H. Isa, K. Watley, C. Rowe, B. Nimmons, A. Prezzy, T. Govan, S. Scoville, Q. Hills and J. Salley, "Effects of Side-Chain on Conformational Characteristics of Poly(3,5-Dimethyl-Phenyl Acrylate) in Toluene at 40℃," Advances in Chemical Engineering and Science, Vol. 2 No. 4, 2012, pp. 435-443. doi: 10.4236/aces.2012.24053.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] P. J. Flory, “Statistical Mechanics of Chain Molecules,” Interscience, New York, 1969.
[2] Z. Xu, N. Hadjichristidis and L. J. Fetterss, “Solution Properties and Chain Dimensions of Poly(n-Alkyl Methacrylates),” Macromolecules, Vol. 17, No. 11, 1984, pp. 2303-2306. doi:10.1021/ma00141a019
[3] L. Gargallo, N. Hamidi and D. Radic, “Synthesis, Solution Properties and Chain Flexibility of Poly(2,6-Dimethylphenyl Methacrylate),” Polymer, Vol. 31, No. 5, 1990, pp. 924-927. doi:10.1016/0032-3861(90)90057-6
[4] Y. Abe and P. J. Flory, “Configurational Statistics of 1,4-Polybutadiene Chains,” Macromolecules, Vol. 4, No. 2, 1971, pp. 219-230. doi:10.1021/ma60020a017
[5] H. Yamakawa and M. Fujii, “Intrinsic Viscosity of Wormlike Chains. Determination of the Shift Factor,” Macromolecules, Vol. 7, No. 1, 1974, pp. 128-135. doi:10.1021/ma60037a024
[6] M. Bohdanecky, “New Method for Estimating the Parameters of the Wormlike Chain Model from the Intrinsic Viscosity of Stiff-Chain Polymers,” Macromolecules, Vol. 16, No. 9, 1983, pp. 1483-1492. doi:10.1021/ma00243a014
[7] H. Morawetz, “Macromolecules in Solution,” Interscience Publishers, New York, 1958.
[8] E. Brandrup, H. Immergut and E. A. Grulke, Eds., “Polymer Handbook,” 4th Edition, John Wily & Sons, Inc. New York, 1999.
[9] M. L. Huggins, “The Viscosity of Dilute Solutions of Long-Chain Molecules. IV. Dependence on Concentration,” Journal of the American Chemical Society, Vol. 64, No. 11, 1942, pp. 2716-2718. doi:10.1021/ja01263a056
[10] E. O. Kraemer, “Molecular Weights of Celluloses and Cellulose Derivates,” Industrial & Engineering Chemistry, Vol. 30, No. 10, 1938, pp. 1200-1203. doi:10.1021/ie50346a023
[11] N. Hamidi, “Synthesis and Characterization of Poly(3,5-Dimethyl-Phenyl-Acrylate) in Toluene at 40?C By Two-Angle Light-Scattering and Differential Pressure Viscometry,” International Journal of Applied Science and Technology, Vol. 2, No. 3, 2012, pp. 7-23.
[12] J. M. G. Cowie, “Polymers: Chemistry & Physics of Modern Materials,” 2nd Edition, Chapman & Hall, London, 1991, (1a) pp. 165, 191-192 and 219; (1b) p. 217; (1c) p. 218.
[13] P. J. Flory, “Principles of Polymer Chemistry,” Cornell University Press, Ithaca, 1953, (2a) p. 27, (2b) p. 310, (3c) p. 617.
[14] H. Yamakawa, “Modern Theory of Polymer Solution,” Harper and Row Publishers, New York, 1971.
[15] N. Hamidi, L. Sealey and B. Hamidi, “Diluted Solution Properties of Poly (3,5-Dimethyl-Phenyl-Acrylate) in Toluene At 25?C and 30?C,” International Journal of Applied Science and Technology, Vol. 2, No. 3, 2012, pp. 7-23.
[16] N. Hamidi, S. Ihekweazu, C. A. Wiredu, O. H. Isa, K. Watley, C. Rowe, B. Nimmons, A. Prezzy, T. Govan, S. Scoville and Q. Hills, “Solution Viscosity of Poly(3,5-Dimethyl-Phenyl-Acrylate) in Toluene at 40?C,” 63rd Southeaster Regional Meeting of American Chemical Society, Richmond, 26-29 October 2011.
[17] J. M. Barrales Rienda, C. Romero Galicia, J. J. Freire and A. Horta, “Dilute Solution Properties of Poly[N-(n-Octadecyl)Maleimide]. 2. Molecular Weight Dependence of the Intrinsic Viscosity in a Few Good Solvents,” Macromolecules, Vol. 16, 1983, p. 1940.
[18] W. R. Moore, “Viscosities of Dilute Polymer Solutions,” Progress in Polymer Science, Vol. 1, 1967, pp. 1-43. doi:10.1016/0079-6700(67)90001-9
[19] J. M. Barrales Rienda, C. R. Galicia, J. J. Freire and A. Horta, “Dilute Solution Properties of Poly[N-(n-Octadecyl)Maleimide]. 4. Cloud Points, θ Solvents, and Molecular Weight Dependence of Intrinsic Viscosity in nAlkyl Alcohols as θ Solvents,” Macromolecules, Vol. 16, No. 11, 1983, pp. 1707-1714. doi:10.1021/ma00245a006
[20] A. E. Tonelli, NMR Spectroscopy and Polymer Microstructure, the Conformational Connection,” VHC Publishers, New York, 1989, p. 56.
[21] Y. Miyaki, Y. Einaga, H. Fujita and M. Fukuda, “Flory’s Viscosity Factor for the System Polystyrene + Cyclohexane at 34.5?C,” Macromolecules, Vol. 13, No. 3, 1980, pp. 588-592. doi:10.1021/ma60075a021
[22] H. Yamakawa and M. Fuji, “Intrinsic Viscosity of Wormlike Chains. Determination of the Shift Factor,” Macromolecules, Vol. 7, No. 1, 1974, pp. 128-135. doi:10.1021/ma60037a024
[23] T. Yoshizaki, J. Nitta and H. Yamakawa, “Transport Coefficients of Helical Wormlike Chains. 4. Intrinsic Viscosity of the Touched-Bead Model,” Macromolecules, Vol. 21, No. 1, 1988, pp. 165-171. doi:10.1021/ma00179a033
[24] A. Ka?tánek, S. Podzimek, J. Dostál, L. ?imek and M. Bohdaneck??y, “Estimation of Conformational Characteristics of Bisphenol-A Based Poly(Hydroxyethers),” Polymer, Vol. 41, No. 8, 2000, pp. 2865-2870. doi:10.1016/S0032-3861(99)00474-7
[25] M. Bohdaneck??y and M. Netopilík, “Note on the Application of the Yoshizaki-Nitta-Yamakawa Theory of the Intrinsic Viscosity of the Touched-Bead Model,” Die Makromolekulare Chemie, Rapid Communications, Vol. 14, No. 7, 1993, pp. 383-386. doi:10.1002/marc.1993.030140703
[26] T. Yoshizaki, J. Nitta and H. Yamakawa, “Transport Coefficients of Helical Wormlike Chains. 4. Intrinsic Viscosity of the Touched-Bead Model,” Macromolekules, Vol. 21, No. 1, 1988, pp. 165-171.
[27] H. Yamakawa, “Modern Theory of Polymer Solutions,” Harper and Row, New York, 1971.
[28] H. Fujita, “Polymer Solutions,” Elsevier, Amsterdam, 1990.
[29] H. Yamakawa and W. H. Stockmayer, “Statistical Mechanics of Wormlike Chains. II. Excluded Volume Effects,” Journal of Chemical Physics, Vol. 57, No. 7, 1972, p. 2843. doi:10.1063/1.1678675
[30] T. Norisuye and H. Fujita, “Excluded-Volume Effects in Dilute Polymer Solutions. XIII. Effects of Chain Stiffness,” Polymer Journal, Vol. 14, No. 2, 1982, pp. 143-147. doi:10.1295/polymj.14.143
[31] H. Yamakawa and J. Shimada, “Stiffness and Excluded— Volume Effects in Polymer Chains,” Journal of Chemical Physics, Vol. 83, No. 5, 1985, pp. 2607-2611. doi:10.1063/1.449254
[32] J. Shimada and H. Yamakawa, “Statistical Mechanics of Helical Worm-Like chains. XV. Excluded-Volume Effects,” Journal of Chemical Physics, Vol. 85, No. 1, 1976, pp. 591-601.
[33] W. Burchard, “üBer den Einflu? der L?sungsmittel Auf die Struktur Linearer Makromoleküle. I,” Die Makromolekulare Chemie, Vol. 50, No. 1, 1961, p. 210. doi:10.1002/macp.1961.020500102
[34] W. H. Stockmayer and M. Fixman, “On the Estimation of Unperturbed Dimensions from Intrinsic Viscosities,” Journal of Polymer Science, Part C, No. 1, 1963, p. 137.
[35] M. Bohdaneck??y, J. Kovár and I. Fortel??y, “Partial Draining of Low-Molecular Weight Polymers with Flexible Chains,” Polymer, Vol. 20, No. 7, 1979, pp. 813-817.
[36] S. Lifson and I. Oppenheim, “Neighbor Interactions and Internal Rotations in Polymer Molecules. IV. Solvent Effect on Internal Rotations,” Journal of Chemical Physics, Vol. 33, No. 1, 1960, p. 109. doi:10.1063/1.1731064
[37] D. J. Joon, P. R. Sundarajan and P. J. Flory, “Conformational Characteristics of Polystyrene,” Macromolecules, Vol. 8, No. 6, 1975, pp. 776-783. doi:10.1021/ma60048a019
[38] T. Beha and L. Valko, “Theoretical Estimation of the Effect of Solvent on Unperturbed Dimensions: 1. Isotactic Poly(Vinyl Alcohol),” Polymer, Vol. 17, No. 4, 1976, pp. 298-302. doi:10.1016/0032-3861(76)90185-3

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.