Study of Photoinduced Interaction between Calf Thymus-DNA and Bovine Serum Albumin Protein with H2Ti3O7 Nanotubes

Abstract

Hydrogen titanate nanotubes were synthesized by hydrothermal process using 10 M NaOH and TiO2 anatase powder. The material synthesized was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to ensure the structural and morphological characteristics. The interaction of calf thymus DNA (CT-DNA) and bovine serum albumin protein with suspended aqueous solution of titanate nanotubes was investigated using UV absorption spectroscopy and the apparent association constant was found to be, Kb= 1.68 × 104 M-1 and Kap=5.41 × 103 M-1 for DNA and BSA respectively. Addition of the titanate nano material resulted quenching of fluorescence spectra of ethidium bromide-DNA in tris HCl buffer solution and that of aqueous protein solution. The apparent binding constant (Ksv= 5.46 × 104M-1 for DNA binding and Ksv = 6.063 × 103M-1 for protein binding) was deduced from relevant fluorescence quenching data using Stern-Volmer equation.

Share and Cite:

R. Chakraborty, S. Chatterjee, S. Sarkar and P. Chattopadhyay, "Study of Photoinduced Interaction between Calf Thymus-DNA and Bovine Serum Albumin Protein with H2Ti3O7 Nanotubes," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 4, 2012, pp. 462-468. doi: 10.4236/jbnb.2012.34047.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, No. 6348, 1991, pp. 56-58. doi:10.1038/354056a0
[2] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, “Titania Nanotubes Prepared by Chemical Processing,” Advanced Materials, Vol. 11, No. 15, 1999, pp. 1307-1310. doi:10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-H
[3] H. Dai, “Carbon Nanotubes: Opportunities and Challenges,” Surface Science, Vol. 500, No. 1, 2002, pp. 218-241. doi:10.1016/S0039-6028(01)01558-8
[4] A. R. Armstrong, G. Armstrong, J. Canales and P. G. Bruce, “TiO2-B Nanowires,” Angewandte Chemie International Edition, Vol. 43, No. 17, 2004, pp. 2286-2288. doi:10.1002/anie.200353571
[5] D. Wu, X. Zhao, J. Liu, A. Li, Y. Chen and N. Ming, “Sequence of Events for the Formation of Titanate Nanotubes, Nanofibers, Nanowires, and Nanobelt,” Cheistry of Material, Vol. 18, No. 18, 2006 pp. 547-553. doi:10.1021/cm0519075
[6] G. R. Patzke, F. Krumeich and R. Nesper, “Oxidic Nanotubes and Nanorods—Anisotropic Modules for a Future Nanotechnology,” Angewandte Chemie International Edition, Vol. 41, No. 14, 2002, pp. 2446-2461.
[7] S. Matsuda and A. Kato, “Titanium Oxide Based Catalysts—A Review,” Applied Catalysis, Vol. 8, No. 2, 1983, pp. 149-165. doi:10.1016/0166-9834(83)80076-1
[8] D. V. Bavykin, J. M. Friedrich and F. C. Walsh, “Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications,” Advanced Materials, Vol. 18, No. 4, 2006, pp. 2807-2824. doi:10.1002/adma.200502696
[9] O. K. Varghese, D. Gong, M. Paulose, K. G. Ong and C. A. Grimes, “Hydrogen Sensing Using Titania Nanotubes,” Sensors and Acuators B, Vol. 93, No. 1, 2003, pp. 338-344. doi:10.1016/S0925-4005(03)00222-3
[10] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, “Formation of Titanium Oxide Nanotube,” Langmuir, Vol. 14, No. 4, 1998, pp. 3160-3163.
[11] Q. Chen, G. H. Du, S. Zhang and L. M. Peng, “The Structure of Trititanate NANOTUBES,” Acta Crystal-logrphy B, Vol. 58, 2002, pp. 587-590. doi:10.1107/S0108768102009084
[12] G. Raschke, S. Kowarik, T. Franzl, C. T. So1nnichsen, A. Klar and J. Feldmann, “Biomolecular Recognition Based on Single Gold Nanoparticle Light Scattering,” Nano Letters, Vol. 3, No. 7, 2003, pp. 935-938.
[13] C. D. Hodneland and M. Mrksich,“Biomolecular Surfaces that Release Ligands under Electrochemical Control,” Journal of the American Chemical Society, Vol. 122, No. 17, 2000, pp. 4235-4236.
[14] F. Patolsky, A. Lichtenstein and I. Willner,“Amplified Microgravimetric Quartz-Crystal-Microbalance Assay of DNA using Oligonucleotide-Functionalized Liposomes or Biotinylated Liposomes,” Journal of the American Chemical Society, Vol. 122, No. 2, 2000, pp. 418-419. doi:10.1021/ja992834r
[15] T. Paunesku, T. Rajh, G. Wiederrecht, J. Maser, S. Vogt and N. Stojicevic, “Biology of TiO2—Oligonucleotide Nanocomposite,” Nature Materials, Vol. 2, No. 5, 2003, pp. 343-346. doi:10.1038/nmat875
[16] T. Rajh Saponjic, Z. Liu, J. Dimitrijevic, N. M. Scherer, N. F. Vega-Arroyo, M. Zapol, P. Curtiss and L. A. Thurnauer, “Charge Transfer across the Nanocrystalline-DNA Interface: Probing DNA Recognition,” Nano Letters, Vol. 4, No. 6, 2004, pp. 1017-1023. doi:10.1021/nl049684p
[17] R. K. Behera, S. Goyal and S. Mazumdar, “Modification of the Heme Active Site to Increase the Peroxidase Activity of Thermophilic Cytochrome P450: A Rational Approach,” Journal of Inorganic Biochemistry, Vol. 104, No. 11, 2010, pp. 1185-1194.
[18] M. Ray, S. Chatterjee, T. Das, S. Bhattacharyya, P. Ayyub and S. Mazumdar, “Conjugation of Cytochrome C with Hydrogen Titanate Nanotubes: Novel Conformational State with Implications for Apoptosis,” Nanotechnology, Vol. 22, 2011, pp. 415705-415713.
[19] S. Chatterjee, K. Bhattacharyya, P. Ayyub and A. K. Tyagi, “Photocatalytic Properties of One-Dimensional Nanostructured Titanates,” The Journal of Physical Chemistry C, Vol. 114, No. 20, 2010, pp. 9424-9430. doi:10.1021/jp1016642
[20] G. H. Du, Q. Chen, R. C. Che, Z. Y. Yuan and L. M. Peng, “Preparation and Structure Analysis of Titanium oxide Nanotubes,” Applied Physics Letters, Vol. 79, No. 22, 2001, pp. 3702-3705. doi:10.1063/1.1423403
[21] L. A. Sklar, B. S. Hudson and R. D. Simoni, “Conjugated Polyene Fatty Acids as Fluorescent Probes: Binding to Bovine Serum Albumin”, Biochemistry, Vol. 16, No. 23, 1977, pp. pp. 5100-5108. doi:10.1021/bi00642a024
[22] D. Gao, Y. Tian, F. Liang, D. Jin, Y. Chen, H. Zhang and Yu. Aimin, “Investigation on the pH-Dependent Binding of Eosin Y and Bovine Serum Albumin by Spectral Methods,” Journal of Luminescence, Vol. 127, No. 2, 2007, pp. 515-522. doi:10.1016/j.jlumin.2007.02.062
[23] H. W. Zhao, M. Ge, Z. X. Zhang, W. F. Wang and G. Z. Wu, “Spectroscopic Studies on the Interaction between Riboflavin and Albumins,” Spectrochimica Acta A , Vol. 65, No. 3-4, 2006, pp. 811-817. doi:10.1016/j.saa.2005.12.038
[24] Y. B. Yin, Y. N. Wang and J. B. Ma, “Aggregation of Two Carboxylic Derivatives of Porphyrin and Their Affinity to Bovine Serum Albumin,” Spectrochimica Acta Part A, Vol. 64, No. 4, 2006, pp. 1032-1038. doi:10.1016/j.saa.2005.09.012
[25] A. Kathiravan and R. Renganathan, “Photoinduced Interactions between Colloidal iO2 Nanoparticles and Calf Thymus-DNA,” Polyhedron, Vol. 28, No. 7, 2009, pp. 1374-1378. doi:10.1016/j.poly.2009.02.040
[26] A. Kathiravan, R Renganathan and S. Anandan, “Interaction of Colloidal AgTiO2 Nanoparticles with Bovine Serum Albumin,” Polyhedron, Vol. 28, No. 1, 2009, pp. 157-161.
[27] A. M. Pyle, J. P. Rehmann, R. Meshoyrer, C. V. Kumar, N. J. Turro and J. K. Barton, “Mixed-Ligand Complexes of Ruthenium(II): Factors Governing Binding to DNA,” Journal of the American Chemical Society, Vol. 111, No. 8, 1989, pp. 3051-3058.
[28] O. Stern and M. Volmer, “über die Abklingzeit der Fluoreszenz,” Zeitschrift für Physik, Vol. 20, 1919, pp. 183-188.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.