Share This Article:

Study of Photoinduced Interaction between Calf Thymus-DNA and Bovine Serum Albumin Protein with H2Ti3O7 Nanotubes

Abstract Full-Text HTML Download Download as PDF (Size:1655KB) PP. 462-468
DOI: 10.4236/jbnb.2012.34047    3,504 Downloads   5,594 Views   Citations

ABSTRACT

Hydrogen titanate nanotubes were synthesized by hydrothermal process using 10 M NaOH and TiO2 anatase powder. The material synthesized was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to ensure the structural and morphological characteristics. The interaction of calf thymus DNA (CT-DNA) and bovine serum albumin protein with suspended aqueous solution of titanate nanotubes was investigated using UV absorption spectroscopy and the apparent association constant was found to be, Kb= 1.68 × 104 M-1 and Kap=5.41 × 103 M-1 for DNA and BSA respectively. Addition of the titanate nano material resulted quenching of fluorescence spectra of ethidium bromide-DNA in tris HCl buffer solution and that of aqueous protein solution. The apparent binding constant (Ksv= 5.46 × 104M-1 for DNA binding and Ksv = 6.063 × 103M-1 for protein binding) was deduced from relevant fluorescence quenching data using Stern-Volmer equation.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

R. Chakraborty, S. Chatterjee, S. Sarkar and P. Chattopadhyay, "Study of Photoinduced Interaction between Calf Thymus-DNA and Bovine Serum Albumin Protein with H2Ti3O7 Nanotubes," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 4, 2012, pp. 462-468. doi: 10.4236/jbnb.2012.34047.

References

[1] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, No. 6348, 1991, pp. 56-58. doi:10.1038/354056a0
[2] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, “Titania Nanotubes Prepared by Chemical Processing,” Advanced Materials, Vol. 11, No. 15, 1999, pp. 1307-1310. doi:10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-H
[3] H. Dai, “Carbon Nanotubes: Opportunities and Challenges,” Surface Science, Vol. 500, No. 1, 2002, pp. 218-241. doi:10.1016/S0039-6028(01)01558-8
[4] A. R. Armstrong, G. Armstrong, J. Canales and P. G. Bruce, “TiO2-B Nanowires,” Angewandte Chemie International Edition, Vol. 43, No. 17, 2004, pp. 2286-2288. doi:10.1002/anie.200353571
[5] D. Wu, X. Zhao, J. Liu, A. Li, Y. Chen and N. Ming, “Sequence of Events for the Formation of Titanate Nanotubes, Nanofibers, Nanowires, and Nanobelt,” Cheistry of Material, Vol. 18, No. 18, 2006 pp. 547-553. doi:10.1021/cm0519075
[6] G. R. Patzke, F. Krumeich and R. Nesper, “Oxidic Nanotubes and Nanorods—Anisotropic Modules for a Future Nanotechnology,” Angewandte Chemie International Edition, Vol. 41, No. 14, 2002, pp. 2446-2461.
[7] S. Matsuda and A. Kato, “Titanium Oxide Based Catalysts—A Review,” Applied Catalysis, Vol. 8, No. 2, 1983, pp. 149-165. doi:10.1016/0166-9834(83)80076-1
[8] D. V. Bavykin, J. M. Friedrich and F. C. Walsh, “Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications,” Advanced Materials, Vol. 18, No. 4, 2006, pp. 2807-2824. doi:10.1002/adma.200502696
[9] O. K. Varghese, D. Gong, M. Paulose, K. G. Ong and C. A. Grimes, “Hydrogen Sensing Using Titania Nanotubes,” Sensors and Acuators B, Vol. 93, No. 1, 2003, pp. 338-344. doi:10.1016/S0925-4005(03)00222-3
[10] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, “Formation of Titanium Oxide Nanotube,” Langmuir, Vol. 14, No. 4, 1998, pp. 3160-3163.
[11] Q. Chen, G. H. Du, S. Zhang and L. M. Peng, “The Structure of Trititanate NANOTUBES,” Acta Crystal-logrphy B, Vol. 58, 2002, pp. 587-590. doi:10.1107/S0108768102009084
[12] G. Raschke, S. Kowarik, T. Franzl, C. T. So1nnichsen, A. Klar and J. Feldmann, “Biomolecular Recognition Based on Single Gold Nanoparticle Light Scattering,” Nano Letters, Vol. 3, No. 7, 2003, pp. 935-938.
[13] C. D. Hodneland and M. Mrksich,“Biomolecular Surfaces that Release Ligands under Electrochemical Control,” Journal of the American Chemical Society, Vol. 122, No. 17, 2000, pp. 4235-4236.
[14] F. Patolsky, A. Lichtenstein and I. Willner,“Amplified Microgravimetric Quartz-Crystal-Microbalance Assay of DNA using Oligonucleotide-Functionalized Liposomes or Biotinylated Liposomes,” Journal of the American Chemical Society, Vol. 122, No. 2, 2000, pp. 418-419. doi:10.1021/ja992834r
[15] T. Paunesku, T. Rajh, G. Wiederrecht, J. Maser, S. Vogt and N. Stojicevic, “Biology of TiO2—Oligonucleotide Nanocomposite,” Nature Materials, Vol. 2, No. 5, 2003, pp. 343-346. doi:10.1038/nmat875
[16] T. Rajh Saponjic, Z. Liu, J. Dimitrijevic, N. M. Scherer, N. F. Vega-Arroyo, M. Zapol, P. Curtiss and L. A. Thurnauer, “Charge Transfer across the Nanocrystalline-DNA Interface: Probing DNA Recognition,” Nano Letters, Vol. 4, No. 6, 2004, pp. 1017-1023. doi:10.1021/nl049684p
[17] R. K. Behera, S. Goyal and S. Mazumdar, “Modification of the Heme Active Site to Increase the Peroxidase Activity of Thermophilic Cytochrome P450: A Rational Approach,” Journal of Inorganic Biochemistry, Vol. 104, No. 11, 2010, pp. 1185-1194.
[18] M. Ray, S. Chatterjee, T. Das, S. Bhattacharyya, P. Ayyub and S. Mazumdar, “Conjugation of Cytochrome C with Hydrogen Titanate Nanotubes: Novel Conformational State with Implications for Apoptosis,” Nanotechnology, Vol. 22, 2011, pp. 415705-415713.
[19] S. Chatterjee, K. Bhattacharyya, P. Ayyub and A. K. Tyagi, “Photocatalytic Properties of One-Dimensional Nanostructured Titanates,” The Journal of Physical Chemistry C, Vol. 114, No. 20, 2010, pp. 9424-9430. doi:10.1021/jp1016642
[20] G. H. Du, Q. Chen, R. C. Che, Z. Y. Yuan and L. M. Peng, “Preparation and Structure Analysis of Titanium oxide Nanotubes,” Applied Physics Letters, Vol. 79, No. 22, 2001, pp. 3702-3705. doi:10.1063/1.1423403
[21] L. A. Sklar, B. S. Hudson and R. D. Simoni, “Conjugated Polyene Fatty Acids as Fluorescent Probes: Binding to Bovine Serum Albumin”, Biochemistry, Vol. 16, No. 23, 1977, pp. pp. 5100-5108. doi:10.1021/bi00642a024
[22] D. Gao, Y. Tian, F. Liang, D. Jin, Y. Chen, H. Zhang and Yu. Aimin, “Investigation on the pH-Dependent Binding of Eosin Y and Bovine Serum Albumin by Spectral Methods,” Journal of Luminescence, Vol. 127, No. 2, 2007, pp. 515-522. doi:10.1016/j.jlumin.2007.02.062
[23] H. W. Zhao, M. Ge, Z. X. Zhang, W. F. Wang and G. Z. Wu, “Spectroscopic Studies on the Interaction between Riboflavin and Albumins,” Spectrochimica Acta A , Vol. 65, No. 3-4, 2006, pp. 811-817. doi:10.1016/j.saa.2005.12.038
[24] Y. B. Yin, Y. N. Wang and J. B. Ma, “Aggregation of Two Carboxylic Derivatives of Porphyrin and Their Affinity to Bovine Serum Albumin,” Spectrochimica Acta Part A, Vol. 64, No. 4, 2006, pp. 1032-1038. doi:10.1016/j.saa.2005.09.012
[25] A. Kathiravan and R. Renganathan, “Photoinduced Interactions between Colloidal iO2 Nanoparticles and Calf Thymus-DNA,” Polyhedron, Vol. 28, No. 7, 2009, pp. 1374-1378. doi:10.1016/j.poly.2009.02.040
[26] A. Kathiravan, R Renganathan and S. Anandan, “Interaction of Colloidal AgTiO2 Nanoparticles with Bovine Serum Albumin,” Polyhedron, Vol. 28, No. 1, 2009, pp. 157-161.
[27] A. M. Pyle, J. P. Rehmann, R. Meshoyrer, C. V. Kumar, N. J. Turro and J. K. Barton, “Mixed-Ligand Complexes of Ruthenium(II): Factors Governing Binding to DNA,” Journal of the American Chemical Society, Vol. 111, No. 8, 1989, pp. 3051-3058.
[28] O. Stern and M. Volmer, “über die Abklingzeit der Fluoreszenz,” Zeitschrift für Physik, Vol. 20, 1919, pp. 183-188.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.