Prediction of Cosmological Constant Λ in Veneziano Ghost Theory of QCD


Based on the Veneziano ghost theory of QCD, we estimate the cosmological constant Λ, which is related to the vacuum energy density, , by =8πG . In the recent Veneziano ghost theory is given by the absolute value of the product of the local quark condensate and quark current mass: =(2NfH/m)*c|mq<0|:qq:|0>|.By solving Dyson-Schwinger Equations for a dressed quark propagator, we found the local quark condensate <0|:qq:|0>; -(235 MeV)3, the generally accepted value. The quark current mass is mq 4.0 Mev. This gives the same result for as found by previous authors, which is somewhat larger than the observed value. However, when we make use of the nonlocal quark condensate, <0|:q(x)q(0):|0>=g(x)<0|:qq:|0>, with g(x) estimated from our previous work, we find Λ is in a good agreement with the observations.

Share and Cite:

Zhou, L. , Ma, W. and Kisslinger, L. (2012) Prediction of Cosmological Constant Λ in Veneziano Ghost Theory of QCD. Journal of Modern Physics, 3, 1172-1177. doi: 10.4236/jmp.2012.329151.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. Einstein, “The Foundation of the General Theory of Relativity,” 1916. http://
[2] A. Einstein, “Die Feldgleichungen der Gravitation, Sitzungsberichte der Preussischen Akademie der Models,” 1915, p. 387.
[3] J. B. Hartle, “Gravity: An Introduction to Einstein’s General Relativity,” Addison Wesley, Boston, 2008, p. 482.
[4] E. Hubble, “A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae,” Proceedings of the National Academy of Sciences of USA, Vol. 15, No. 3, 1929, 168-173. doi:10.1073/pnas.15.3.168
[5] S. M. Carroll, “The Cosmological Constant,” Living Reviews in Relativity, Vol. 4, No. 1, 2000. arXiv: astro-ph/ 0004075
[6] A. H. Guth, “The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems,” Physical Review D, Vol. 23, 1981, pp. 347-356.
[7] D. N. Spergel, L. Verde, H. V. Peiris, et al., “First Year Wilkinson Microwave Anisotropy Probe (WMAP) Obsevations: Determinaion of Cosmological Parameters,” Astrophysical Journal Supplement, Vol. 148, No. 1, 2003, p. 175. arXiv:astro-ph/0302209
[8] A. G. Riess, J. Astron, et al., “Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astronomical Journal, Vol. 116, No. 3, 1998, p. 1009. arXiv:astro-ph / 9805201
[9] S. Perlmutter, et al., “Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophysical Journal, Vol. 517, No. 2, 1999, p. 565. arXiv:astro-ph/ 9812133
[10] D. J. Shaw and J. D Barrow, “A Testable Solution of the Cosmological Constant and Coincidence Problems,” Physical Review D, Vol. 83, 2011, Article ID: 043518.
[11] F. R. Urban and A. R. Zhitnitsky, “The Cosmological Constant from the Veneziano Ghost which Solves the U(1) Problem in QCD,” Physical Letters B, Vol. 688, 2010, p. 9.
[12] F. R. Urban and A. R. Zhitnitsky, “Cosmological Constant, Violation of Cosmological Isotropy and CMB,” Physical Review D, Vol. 80, 2009, Article ID: 063001.
[13] G. Veneziano, “U(1) without Instantons,” Nuclear Physics B, Vol. 159, No. 1-2, 1979, pp. 213-224. doi:10.1016/0550-3213(79)90332-8
[14] E. Witten, “Current Algebra Theorems for the U(1) ‘Goldstone Boson’,” Nuclear Physics B, Vol. 156, No. 2, 1979, pp. 269-283. doi:10.1016/0550-3213(79)90031-2
[15] J. D. Barrow and D. J. Shaw, “Quantum Field Effects Near Singularities,” Physical Review Letters, Vol. 1, 2011, p. 10130. arXiv:1201.1138v1
[16] H. Hata, T. Kugo and N. Ohta, “Skew-Symmetric Tensor Gauge Field Theory Dynamically Realized in the QCD U(1) Channel,” Nuclear Physics B, Vol. 178, No. 3, 1981, pp. 527-544. doi:10.1016/0550-3213(81)90170-X
[17] L.-J. Zhou, L. S. Kisslinger and W.-X. Ma, “Nonzero Mean Squared Momentum of Quarks in the Non-Perturbative QCD Vacuum,” Physical Review D, Vol. 82, 2010, Article ID: 034037.
[18] F. J. Dyson, “The S-Matrix in Quantum Electrodynamics ,” Physical Review, Vol. 75, 1949, p. 1736.
[19] J. S. Schwinger, “On the Green’s Functions of Quantized Fields. I,” Proceedings of the National Academy of Sciences of USA, Vol. 37, No. 7, 1951, pp. 452-455. doi:10.1073/pnas.37.7.452
[20] A. G. Williams, G. Krein and C. D. Roberts, “Modelling the Quark Propagator,” Annals of Physics, Vol. 210, No. 2, 1991, pp. 464-485. doi:10.1016/0003-4916(91)90051-9
[21] L.-J. Zhou and W.-X. Ma, “Structure of Nonlocal Vacuum Condensate of Quarks,” Chinese Physics Letters, Vol. 20, No. 12, 2003, p. 2137. doi:10.1088/0256-307X/20/12/014
[22] L.-J. Zhou and W.-X. Ma, “Quark Virtuality and QCD Vacuum Condensates,” Chinese Physics Letters, Vol. 21, No. 8, 2004, p. 1471. doi:10.1088/0256-307X/21/8/016
[23] W.-X. Ma, L.-J. Zhou, Gu Yun-ting, et al., “Quark Mass Dependence of Nucleon Magnetic Moment and Charge Radii,” Communications in Theoretical Physics, Vol. 44, 2005, p. 333.
[24] M. V. Polyakov and C. Weiss, “Mixed Quark-Gluon Condensate from Instantons,” Physics Letters B, Vol. 387, No. 4, 1996, pp. 841-847. doi:10.1016/0370-2693(96)01098-2
[25] H. G. Dosch and S. Narison, “Direct Extraction of the Chiral Quark Condensate and Bounds on the Light Quark Masses,” Physics Letters B, Vol. 417, 1998, pp. 173-176. doi:10.1016/S0370-2693(97)01370-1
[26] M. Kremer and G. Schierholz, “Calculation of the Condensate on the Lattice,” Physics Letters B, Vol. 194, No. 2, 1987, pp. 283-286. doi:10.1016/0370-2693(87)90543-0
[27] D. B. Leinweber, “QCD Sum Rules For Skeptics,” Report No. DOE/Er/40427-17-N 95, 1995.
[28] L. Giusti, “The QCD Chiral Condensate from the Lattice,” Nuclear Physics B, Vol. 538, No. 1-2, 1999, pp. 249-277. doi:10.1016/S0550-3213(98)00659-2
[29] P. Hernandez, “Scalar Condensate and Light Quark Masses from Overlap Fermions,” Nuclear Physics B, Vol. 106-107, 2002, pp. 766-771. doi:10.1016/S0920-5632(01)01838-2
[30] M. Jamin, J. A. Oller and A. Pich, “Light Quark Masses from Scalar Sum Rules,” The European Physical Journal C: Particles and Fields, Vol. 24, No. 2, 2002, pp. 237-243. doi:10.1007/s100520200930
[31] T. Doi, N. Ishii, M. Oka and H. Suganuma, “Quark-Gluon Mixed Condensate g from Lattice QCD,” Nuclear Physics A, Vol. 721, 2003, pp. 934-937. doi:10.1016/S0375-9474(03)01246-6
[32] K. Nakamura et al., “Review of Particle Physics,” Journal of Physics G, Vol. 37, 2010, Article ID: 075021.
[33] M. Tegmark, M. A. Strauss, M. R. Blanton, et al., “Cosmological Parameters from SDSS and WMAP,” Physical Review D, Vol. 69, 2004, Article ID: 103501.
[34] H. Jung and L. S. Kisslinger, “Non-Local Quark Condensate for the Nucleon Sea-Quark Distribution,” Nuclear Physics A, Vol. 586, No. 4, 1995, pp. 682-692. doi:10.1016/0375-9474(95)00004-K
[35] M. B. Johnson and L. S. Kisslinger, “Hadronic Coupling via QCD Sum Rules Using Three-Point Functions: Vacuum Susceptibilities,” Physical Review D, Vol. 57, No. 2, 1998, p. 2847.
[36] N. Ohta, “Dark energy and QCD Ghost,” Physical Letters B, Vol. 695, No. 1-4, 2011, pp. 41-44. doi:10.1016/j.physletb.2010.11.044
[37] J. B. Kogut and L. Susskind, “Hamiltonian Formulation of Wilson’s Lattice Gauge Theory,” Physical Review D, Vol. 11, 1975, pp. 359-408.
[38] P. Nath and R. L. Arnowitt, “U(1) Problem: Current Algebra and the θ Vacuum,” Physical Review D, Vol. 23, No. 2, 1981, pp. 473-476.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.