The Mathematical Modelling for Studying the Influence of the Initial Stresses and Relaxation Times on Reflection and Refraction Waves in Piezothermoelastic Half-Space

DOI: 10.4236/am.2012.38123   PDF   HTML   XML   3,580 Downloads   6,485 Views   Citations

Abstract

The present paper concentrates on the study of reflection and refraction phenomena of waves in pyroelectric and piezo-electric media under initial stresses and two relaxation times influence by apply suitable conditions. The generalized theories of linear piezo-thermoelasticity have been employed to investigate the problem. In two-dimensional model of transversely isotropic piezothermoelastic medium, there are four types of plane waves quasi-longitudinal (qP), quasi-transverse (qSV), thermal wave (T-mode), and potential electric waves (φ-mode) The amplitude ratios of reflection and refraction waves have been obtained. Finally, the results in each case are presented graphically.

Share and Cite:

F. Alshaikh, "The Mathematical Modelling for Studying the Influence of the Initial Stresses and Relaxation Times on Reflection and Refraction Waves in Piezothermoelastic Half-Space," Applied Mathematics, Vol. 3 No. 8, 2012, pp. 819-832. doi: 10.4236/am.2012.38123.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. D. Mindlin, “On the Equations of Motion of Piezoelectric Crystals,” In: N. I. Muskilishivili, Ed., Problems of continuum Mechanics, 70th Birthday Volume, SIAM, Philadelphia, 1961, pp. 282-290.
[2] W. Nowacki, “Some General Theorems of Thermo-Piezoelectricity,” Journal of Thermal Stresses, Vol. 1, No. 2, 1978, pp. 171-182. HUdoi:10.1080/01495737808926940U
[3] W. Nowacki, “Foundation of Linear Piezoelectricity,” In: H. Parkus, Ed., Interactions in Elastic Solids, Springer, Wein, 1979.
[4] D. S. Chandrasekharaiah, “A Generalized Thermoelastic Wave Propagation in a Semi-Infinite Piezoelectric Rod,” Acta Mechanica, Vol. 71, No. 1-4, 1988, pp. 39-49. HUdoi:10.1007/BF01173936U
[5] J. N. Sharma and M. Kumar, “Plane Harmonic Waves in Piezo-Thermoelastic Materials,” Indian Journal of Engineering and Material Science, Vol. 7, 2000, pp. 434-442.
[6] J. N. Sharma and V. Walia, “Further Investigations on Rayleigh Waves in Piezothermoelastic Materials,” Journal of Sound and Vibration, Vol. 301, No. 1-2, 2007, pp. 189-206. HUdoi:10.1016/j.jsv.2006.09.018U
[7] H. Deresiewicz, “Effect of Boundaries on Waves in a Thermoelastic Solid: Re?exion of Plane Waves from Plane Boundary,” Journal of the Mechanics Physics of Solids, Vol. 8, No. 3, 1960, pp. 164-172. HUdoi:10.1016/0022-5096(60)90035-1U
[8] H. Lord and Y. Shulman, “A Generalized Dynamical Theory of Thermoelasticity,” Journal of the Mechanics and Physics of Solid, Vol. 15, No. 5, 1967, pp. 299-309. HUdoi:10.1016/0022-5096(67)90024-5U
[9] A. E. Green and K. A. Lindsay, “Thermoelasticity,” Journal of Elasticity, Vol. 2, No. 1, 1972, pp. 1-7. HUdoi:10.1007/BF00045689U
[10] A. N. Sinha and S. B. Sinha, “Re?ection of Thermoelastic Waves at a Solid Half-Space with Thermal Relaxation,” Journal of Physics of the Earth, Vol. 22, No. 2, 1974, pp. 237-244. HUdoi:10.4294/jpe1952.22.237U
[11] J. N. Sharma, “Reflection of Thermoelastic Waves from the Stress-Free Insulated Boundary of an Anisotropic Half-Space,” Indian Journal of Pure and Applied Mathematics, Vol. 19, 1988, pp. 294-304.
[12] S. B. Sinha and K. A. Elsibai, “Reflection of Thermoelastic Waves at a Solid Half-Space with Two Thermal Relaxation Times,” Journal of Thermal Stresses, Vol. 19, 1996, pp. 763-777. HUdoi:10.1080/01495739608946205U
[13] S. B. Sinha and K. A. Elsibai, “Reflection and Refraction of Thermoelastic Waves at an Interface of Two Semi-Infinite Media with Two Thermal Relaxation Times,” Journal of Thermal Stresses, Vol. 20, No. 2, 1997, pp. 129-146. HUdoi:10.1080/01495739708956095U
[14] A. N. Abd-Alla and A. A. S. Al-Dawy, “The Reflection Phenomena of SV Waves in a Generalized Thermoelastic Medium,” International Journal of Mathematics and Mathematical Sciences, Vol. 23, No. 8, 2000, pp. 529-546. HUdoi:10.1155/S0161171200004221U
[15] J. N. Sharma, V. Kumar and D. Chand, “Reflection of Generalized Thermoelastic Waves from the Boundary of a Half-Space,” Journal of Thermal Stresses, Vol. 26, No. 10, 2003, pp. 925-942. HUdoi:10.1080/01495730306342U
[16] J. N. Sharma, V. Walia and S. K. Gupta, “Reflection of Piezo-Thermoellastic Waves from the Charge and Stress Free Boundary of a Transversely Isotropic Half Space,” International Journal of Engineering Science, Vol. 46, No. 2, 2008, pp. 131-146. HUdoi:10.1016/j.ijengsci.2007.10.003U
[17] Z.-B. Kuang and X.-G. Yuan, “Reflection and Transmission of Waves in Pyroelectric and Piezoelectric Materials,” Journal of Sound and Vibration, Vol. 330, No. 6, 2011, pp. 1111-1120. HUdoi:10.1016/j.jsv.2010.09.026U
[18] A. N. Abd-Alla and F. A. Alsheikh,” Reflection and Refraction of Plane Quasi-Longitudinal Waves at an Interface of Two Piezoelectric Media under Initial Stresses,” Archive of Applied Mechanics, Vol. 79, No. 9, 2009, pp. 843-857. HUdoi:10.1007/s00419-008-0257-yU
[19] A. N. Abd-Alla, F. A. Alsheikh and A. Y. Al-Hossain, “The Reflection Phenomena of Quasi-Vertical Transverse Waves in Piezoelectric Medium under Initial Stresses,” Meccanica, Vol. 47, No. 3, 2012, pp. 731-744. HUdoi:10.1007/s11012-011-9485-2U
[20] J. D. Achenbach, “Wave Propagation in Elastic Solids,” North-Holland Publishing Company, Amsterdam, 1973.
[21] J. N. Sharma, M. Pal and D. Chand, “Three-Dimensional Vibration Analysis of a Piezothermoelastic Cylindrical Panel,” International Journal of Engineering Science, Vol. 42, No. 15-16, 2005, pp. 1655-1673. HUdoi:10.1016/j.ijengsci.2004.01.006U

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.