or == Function) { fCallBack(xhrj); } } else { } } }; xhrj.open('GET', encodeURI(sUrl), bAsync); xhrj.send('Null'); } } function RndNum(n) { var rnd = ""; for (var i = 0; i < n; i++) rnd += Math.floor(Math.random() * 10); return rnd; } function SetNum(item) { var url = "//www.scirp.org/journal/senddownloadnum.aspx"; var args = "paperid=" + item; url = url + "?" + args + "&rand=" + RndNum(4); window.setTimeout("show('" + url + "')", 3000); } function show(url) { var callback = function (xhrj) { } ajaxj.get(url, true, callback, "try"); } // function SetNumTwo(item) { // alert("jinlia"); // var url = "../userInformation/PDFLogin.aspx"; // var refererrurl = document.referrer; // var downloadurl = window.location.href; // var args = "PaperID=" + item + "&RefererUrl=" + refererrurl + "&DownloadUrl="+downloadurl; // url = url + "?" + args + "&rand=" + RndNum(4); // //// window.setTimeout("show('" + url + "')", 500); // } // function pdfdownloadjudge() { // $("a").each(function(index) { // var rel = $(this).attr("rel"); // if (rel == "true") { // $(this).removeAttr("onclick"); // $(this).attr("href","#"); // //$(this).bind('click', function() { SetNumTwo(21118)}); // var url = "../userInformation/PDFLogin.aspx"; // var refererrurl = document.referrer; // var downloadurl = window.location.href; // var args = "PaperID=" + 21118 + "&RefererUrl=" + refererrurl + "&DownloadUrl=" + downloadurl; // url = url + "?" + args + "&rand=" + RndNum(4); // // $(this).bind('click', function() { ShowTwo(url)}); // } // }); // } // //获取下载pdf注册的cookie // function getcookie() { // var cookieName = "pdfddcookie"; // var cookieValue = null; //返回cookie的value值 // if (document.cookie != null && document.cookie != '') { // var cookies = document.cookie.split(';'); //将获得的所有cookie切割成数组 // for (var i = 0; i < cookies.length; i++) { // var cookie = cookies[i]; //得到某下标的cookies数组 // if (cookie.substring(0, cookieName.length + 2).trim() == cookieName.trim() + "=") {//如果存在该cookie的话就将cookie的值拿出来 // cookieValue = cookie.substring(cookieName.length + 2, cookie.length); // break // } // } // } // if (cookieValue != "" && cookieValue != null) {//如果存在指定的cookie值 // return false; // } // else { // // return true; // } // } // function ShowTwo(webUrl){ // alert("22"); // $.funkyUI({url:webUrl,css:{width:"600",height:"500"}}); // } //window.onload = pdfdownloadjudge;
JMP> Vol.3 No.7, July 2012
Share This Article:
Cite This Paper >>

Theory of Zero-Resistance States Generated by Radiation in GaAs/AlGaAs

Abstract Full-Text HTML XML Download Download as PDF (Size:480KB) PP. 546-552
DOI: 10.4236/jmp.2012.37075    4,082 Downloads   6,413 Views   Citations
Author(s)    Leave a comment
Shigeji Fujita, Kei Ito, Akira Suzuki

Affiliation(s)

Department of Physics, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan.
Department of Physics, University at Bu_alo, SUNY, Bu_alo, NY, USA.
Research Division, National Center for University Entrance Examinations, Meguro-ku, Tokyo, Japan.

ABSTRACT

Mani observed zero-registance states similar to those quantum-Hall-effect states in GaAs/AlGaAs but without the Hall resistance plateaus upon the application of radiations [R. G. Mani, Physica E 22, 1 (2004)]. An interpretation is presented. The applied radiation excites “holes”. The condensed composite (c)-bosons formed in the excited channel create a superconducting state with an energy gap. The supercondensate suppresses the non-condensed c-bosons at the higher energy, but it cannot suppress the c-fermions in the base channel, and the small normal current accompanied by the Hall field yeilds a B-linear Hall resistivity.

KEYWORDS

Superconducting (Zero-Resistance) States; Composite-Boson (Fermion); B-Linear Hall Resistivity; Phonon (Fluxon) Exchange

Cite this paper

S. Fujita, K. Ito and A. Suzuki, "Theory of Zero-Resistance States Generated by Radiation in GaAs/AlGaAs," Journal of Modern Physics, Vol. 3 No. 7, 2012, pp. 546-552. doi: 10.4236/jmp.2012.37075.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. G. Mani, J. H. Smet, K. von Klitzing, V. Narayanamurti, W. B. Johnson and V. Umansky, “Zero-Resistance States Induced by Electromagnetic-Wave Excitation in GaAs/AlGaAs Heterostructures,” Nature, Vol. 420, 2004, pp. 646-650. doi:10.1038/nature01277
[2] R. G. Mani, “Zero-Resistance States Induced by Electromagnetic-Wave Excitation in GaAs/AlGaAs Hetero- structures,” Physica E, Vol. 22, 2004, pp. 1-6. doi:10.1016/j.physe.2003.11.204
[3] R. R. Du, M. A. Zudov, C. L. Yang, Z. Q. Yuan, L. N. Pfeiffer and K. W. West, “Oscillatory and Vanishing Resistance States in Microwave Irradiated 2D Electron Systems,” In: Y. Wang, L. Engel and N. Bonesteel, Eds., High Magnetic Fields in Semiconductor Physics, World Scientific, Singapore, 2005, pp. 11-18. doi:10.1142/9789812701923_0001
[4] D. C. Tsui, H. L. St?rmer and A. C. Gossard, “Two- Dimensional Magnetotransport in the Extreme Quantum Limit,” Physical Review Letters, Vol. 48, 1982, pp. 1559- 1562. doi:10.1103/PhysRevLett.48.1559
[5] M. A. Zudov, R. R. Du, L. N. Pfeiffer and K.W. West, “Evidence for a New Dissipationless Effect in 2D Electronic Transport,” Physical Review Letters, Vol. 90, 2003, Article ID: 046807. doi:10.1103/PhysRevLett.90.046807
[6] R. G. Mani, V. Narayanamurti, K. von Klitzing, J. H. Smet, W. B. Johnson and V. Umansky, “Radiation-In- duced Oscillatory Hall Effect in Highmobility GaAs/ AlxGa1 xAs devices,” Physical Review B, Vol. 69, 2004, Article ID: 161306. doi:10.1103/PhysRevB.69.161306
[7] J. C. Phillips, “Microscopic Origin of Collective Exponentially Small Resistance States,” Solid State Communications, Vol. 127, No. 3, 2003, pp. 233-236. doi:10.1016/S0038-1098(03)00350-8
[8] A. V. Andreev, I. L. Aleiner and A. J. Millis, “Dynamical Symmetry Breaking as the Origin of the Zero-dc-Resistance State in an ac-Driven System,” Physical Review Letters, Vol. 91, No. 5, 2003, Article ID: 056803. doi:10.1103/PhysRevLett.91.056803
[9] A. C. Durst, S. Sachdev, N. Read and S. M. Girvin, “Radiation-Induced Magnetoresistance Oscillations in a 2D Electron Gas,” Physical Review Letters, Vol. 91, No. 8, 2003, Article ID: 086803. doi:10.1103/PhysRevLett.91.086803
[10] J. Shi and X. C. Xie, “Radiation-Induced Zero-Resistance State and the Photon-Assisted Transport,” Physical Review Letters, Vol. 91, No. 8, 2003, Article ID: 086801. doi:10.1103/PhysRevLett.91.086801
[11] F. S. Bergeret, B. Huckestein and A. F. Volkov, “Current- Voltage Characteristics and the Zero-Resistance State in a Two-Dimensional Electron Gas,” Physical Review B, Vol. 67, 2003, Article ID: 241303. doi:10.1103/PhysRevB.67.241303
[12] S. Fujita, S. Godoy and D. Nguyen, “Bloch Electron Dynamics,” Foundation of Physics, Vol. 25, No. 8, 1995, pp. 1209-1220. doi:10.1007/BF02055258
[13] J. Bardeen, L. N. Cooper and J. R. Schrieffer, “Theory of Superconductivity,” Physical Review, Vol. 108, No. 5, 1957, pp. 1175-1204. doi:10.1103/PhysRev.108.1175
[14] S. Fujita, Y. Tamura and A. Suzuki, “Microscopic Theory of the Quantum Hall Effect,” Modern Physics Letters B, Vol. 15, No. 20, 2001, pp. 817-825. doi:10.1142/S0217984901002610
[15] R. B. Laughlin, “Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations,” Physical Review Letters, Vol. 50, No. 18, 1983, pp. 1395-1398. doi:10.1103/PhysRevLett.50.1395
[16] F. D. M. Haldane, “Fractional Quantization of the Hall Effect: A Hierarchy of Incompressible Quantum Fluid States,” Physical Review Letters, Vol. 51, No. 7, 1983, pp. 605-608. doi:10.1103/PhysRevLett.51.605
[17] J. K. Jain, “Composite-Fermion Approach for the Fractional Quantum Hall Effect,” Physical Review Letters, Vol. 63, No. 2, 1989, pp. 199-202. doi:10.1103/PhysRevLett.63.199
[18] J. K. Jain, “Incompressible Quantum Hall States,” Physical Review B, Vol. 40, No. 11, 1989, pp. 8079-8082. doi:10.1103/PhysRevB.40.8079
[19] J. K. Jain, “Theory of the Fractional Quantum Hall effect,” Physical Review B, Vol. 41, No. 11, 1990, pp. 7653- 7665. doi:10.1103/PhysRevB.41.7653
[20] R. E. Prange and S. M. Girvin, “The Quantum Hall Effect,” 2nd Edition, Springer-Verlag, New York, 1990.
[21] Z. F. Ezawa, “Quantum Hall Effects,” World Scientific, Singapore, 2000.
[22] M. Stone, “Quantum Hall Effect,” World Scientific, Singapore, 1992.
[23] T. Chakraborty and P. Pietilainen, “Quantum Hall Effects,” 2nd Edition, Springer-Verlag, Berlin, 1995. doi:10.1007/978-3-642-79319-6

  
comments powered by Disqus
JMP Subscription
E-Mail Alert
JMP Most popular papers
Publication Ethics & OA Statement
JMP News
Frequently Asked Questions
Recommend to Peers
Recommend to Library
Contact Us

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.