; } // function SetNumTwo(item) { // alert("jinlia"); // var url = "../userInformation/PDFLogin.aspx"; // var refererrurl = document.referrer; // var downloadurl = window.location.href; // var args = "PaperID=" + item + "&RefererUrl=" + refererrurl + "&DownloadUrl="+downloadurl; // url = url + "?" + args + "&rand=" + RndNum(4); // //// window.setTimeout("show('" + url + "')", 500); // } // function pdfdownloadjudge() { // $("a").each(function(index) { // var rel = $(this).attr("rel"); // if (rel == "true") { // $(this).removeAttr("onclick"); // $(this).attr("href","#"); // //$(this).bind('click', function() { SetNumTwo(18818)}); // var url = "../userInformation/PDFLogin.aspx"; // var refererrurl = document.referrer; // var downloadurl = window.location.href; // var args = "PaperID=" + 18818 + "&RefererUrl=" + refererrurl + "&DownloadUrl=" + downloadurl; // url = url + "?" + args + "&rand=" + RndNum(4); // // $(this).bind('click', function() { ShowTwo(url)}); // } // }); // } // //获取下载pdf注册的cookie // function getcookie() { // var cookieName = "pdfddcookie"; // var cookieValue = null; //返回cookie的value值 // if (document.cookie != null && document.cookie != '') { // var cookies = document.cookie.split(';'); //将获得的所有cookie切割成数组 // for (var i = 0; i < cookies.length; i++) { // var cookie = cookies[i]; //得到某下标的cookies数组 // if (cookie.substring(0, cookieName.length + 2).trim() == cookieName.trim() + "=") {//如果存在该cookie的话就将cookie的值拿出来 // cookieValue = cookie.substring(cookieName.length + 2, cookie.length); // break // } // } // } // if (cookieValue != "" && cookieValue != null) {//如果存在指定的cookie值 // return false; // } // else { // // return true; // } // } // function ShowTwo(webUrl){ // alert("22"); // $.funkyUI({url:webUrl,css:{width:"600",height:"500"}}); // } //window.onload = pdfdownloadjudge;
ENG> Vol.4 No.4, April 2012
Share This Article:
Cite This Paper >>

Automotive Ride Comfort Control Using MR Fluid Damper

Abstract Full-Text HTML Download Download as PDF (Size:652KB) PP. 179-187
DOI: 10.4236/eng.2012.44024    7,529 Downloads   13,673 Views   Citations
Author(s)    Leave a comment
Mahmoud El-Kafafy, Samir M. El-Demerdash, Al-Adl Mohamed Rabeih

Affiliation(s)

University of Helwan, Cairo, Egypt.

ABSTRACT

In this paper, the performance of automotive ride comfort using Bouc-Wen type magneto-rheological (MR) fluid damper is studied using a two degree of freedom quarter car model. The sliding mode control is used to force the MR damper to follow the dynamics of ideal sky-hock model. The model is tested on two excitations, the first is a road hump with severe peak amplitude and the second is a statistical random road. The results are generated and presented in time and frequency domains using Matlab/Simulink software. Comparison with the fully active, ideal semi-active and conventional passive suspension systems are given as a root mean square values. Simulation results, for the designed controller, show that with the controllable MR damper has a significant improvement for the vehicle road holding then its lateral stability as well as road damage in comparison with passive, fully active and ideal semi-active suspension systems.

KEYWORDS

Ride Comfort; Rheological Fluid Damper; Vibration Control

Cite this paper

M. El-Kafafy, S. El-Demerdash and A. Rabeih, "Automotive Ride Comfort Control Using MR Fluid Damper," Engineering, Vol. 4 No. 4, 2012, pp. 179-187. doi: 10.4236/eng.2012.44024.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. Y. Wong, “Theory of Ground Vehicles,” 3rd Edition, Wiley-Inter Science, New York, 2001.
[2] D. Karnopp, “Ac-tive Damping in Road Vehicle Suspension Systems,” Journal of Vehicle System Dynamics, Vol. 12, No. 6, 1983, pp. 291-316. doi:10.1080/00423118308968758
[3] D. A. Crolla, G. R. Firth, P. J. Hine and P. T. Perarce, “The Performance of Sus-pensions Fitted with Controllable Dampers,” Journal of Vehicle System Dynamics, Vol. 20, 1991, pp. 149-165.
[4] S. M. El-Demardash, “Improvement of Trucks Ride Dynamics Using a Hydraulic Semi-Active Suspension System,” SAE Paper No 2002-01-3039, SP-1728, 2002.
[5] G. Alessanro, M. Mauro, S. Carla and U. Giampaolo, “Design of Predictive Semi-Active Suspension System,” Journal of Vehicle System Dynamics, Vol. 41, No. 4, 2004, pp. 277-300. doi:10.1080/00423110412331315169
[6] S. Tao, H. Zhenyu and C. Dayue, “Signal Frequency- Based Semi-Active Fuzzy Control for Two-Stage Vibration Isolation System,” Journal of Sound and Vibration, Vol. 280, No. 3-5, 2005, pp. 965-981.
[7] B. F. Spencer, S. J. Dyke, M. K. Sain and J. D. Carlson, “Phenomenological Model for Magnetorheological Dampers,” Journal of Engineering Mechanics, Vol. 123, No. 3, 1997, pp. 230-238. doi:10.1061/(ASCE)0733-9399(1997)123:3(230)
[8] Lord Corporation Web Site, 2004. http//www.lord.com
[9] C. C. Chang and L. Zhou, “Neural Network Emulation of Inverse Dynamics for a Magnetorheological Damper,” Journal of Structural Engineering, Vol. 128, No. 2, 2002, pp. 231-239. doi:10.1061/(ASCE)0733-9445(2002)128:2(231)
[10] K. C. Schurter and P. N. Roschke, “Fuzzy Modeling of a Magnetor-heological Damper Using ANFIS,” Proceedings of the IEEE International Conference on Fuzzy Systems, Vol. 1, 2000, pp. 122-127.
[11] S. B. Choi, S. K. Lee and Y. P. Park, “A Hys-teresis Model for the Field-Dependent Damping Force of a Magnetorheological Damper,” Journal of Sound and Vibration, Vol. 245, No. 2, 2001, pp. 375-383. doi:10.1006/jsvi.2000.3539
[12] G. Jin, M. K. Sain, K. D. Pham, B. F. Spencer and J. C. Ramallo, “Modeling MR-Dampers: A Nonlinear Blackbox Approach,” Proceedings of the American Control Conference, Vol. 1, 2001, pp. 429-434.
[13] A. Leva and L. Piroddi, “NARX-Based Tech-nique for the Modelling of Magneto-Rheological Damping Devices,” Smart Materials and Structures, Vol. 11, No. 1, 2002, pp. 79-88. doi:10.1088/0964-1726/11/1/309
[14] H. H. Tsang, R. K. L. Su and A. M. Chandler, “Simplified Inverse Dynamics Models for MR Fluid Dampers,” Engineering Structures, Vol. 28, No. 3, 2006, pp. 327-341. doi:10.1016/j.engstruct.2005.06.013
[15] S. Xubin, A. Mehdi, S. Southward and L. Miller, “Paramettric Study of Nonlinear adaptive Control Algorithm with Magneto-Rheological Sus-pension Systems,” Communications in Nonlinear Science and Numerical Simulation, Vol. 12, No. 4, 2007, pp. 584-607. doi:10.1016/j.cnsns.2005.05.004
[16] N. M. Kwok, Q. P. Ha, M. T. Nguyen, J. Li and B. Samali, “Bouc-Wen Model Pa-rameter Identification for a MR Fluid Damper Using Computa-tionally Efficient GA,” ISA Transactions, Vol. 46, No. 2, 2007, pp. 167-179. doi:10.1016/j.isatra.2006.08.005
[17] W. H. Liao and C. Y. Lai, “Vibration Control of a Suspension System via a Magne-torheological Fluid Damper,” Journal of Vibration and Control, Vol. 8, No. 4, 2002, pp. 527-547. doi:10.1177/107754602023712
[18] A. H.-F. Lam and W.-H. Lio, “Semi-Active Control of Automotive Suspension Systems with Magnetorheological Dampers,” International Journal of Vehicle Design, Vol. 33, No. 1-3, 2002, pp. 50-75.
[19] E. J. Slotine and W. Li, “Applied Nonlinear Control,” Prentice-Hall, New Jersey, 1991, pp. 276-310.
[20] M. El-Kafafy, “Vehicle Vibration Control Using Smart Fluid Dampers,” MSc Thesis, Helwan University, Egypt, 2006.
[21] M. El-Kafafy, E. Rabeih, S. El-Demerdash and A. El-Butch, “Active Suspension Design for Passenger Cars Using LQR and GA with PID Controller,” SAE Technical Paper No. 2007-01-2423, 2007.
[22] S. Lu, C. Ximing and Y. Jun, “Genetic Algorithm-Based Optimum Vehi-cle Suspension Design Using Minimum Dynamic Pavement Load as a Design Criteria,” Journal of Sound and Vibration, Vol. 301, 2007, pp. 18-27. doi:10.1016/j.jsv.2006.08.040

  
comments powered by Disqus
ENG Subscription
E-Mail Alert
ENG Most popular papers
Publication Ethics & OA Statement
ENG News
Frequently Asked Questions
Recommend to Peers
Recommend to Library
Contact Us

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.