Share This Article:

A Nonstationary Halley’s Iteration Method by Using Divided Differences Formula

Abstract Full-Text HTML Download Download as PDF (Size:91KB) PP. 169-171
DOI: 10.4236/am.2012.32026    4,164 Downloads   7,003 Views  
Author(s)    Leave a comment

ABSTRACT

This paper presents a new nonstationary iterative method for solving non linear algebraic equations that does not require the use of any derivative. The study uses only the Newton’s divided differences of first and second orders instead of the derivatives of (1).

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

N. Ide, "A Nonstationary Halley’s Iteration Method by Using Divided Differences Formula," Applied Mathematics, Vol. 3 No. 2, 2012, pp. 169-171. doi: 10.4236/am.2012.32026.

References

[1] T. Kogan, L. Sapir and A. Sapir, “A Nonstationary Iterative Second-Order Method for Solving Non- Linear Equations,” Applied Mathematics and Computation, Vol. 188, No. 1, 2007, pp. 75-82. doi:10.1016/j.amc.2006.09.092
[2] T. I. Kogan, “Generalization of the Method of Chords for an Algebraic or Transcendental Equation,” in Russian, Ta?hkent. Gos. Univ. Naun. Trudy Vyp, Vol. 276, 1966, pp. 53-55.
[3] D. K. R. Babajee and M. Z. Dauhoo, “An Analysis of the Properties of the Variants of Newton’s Method with Third Order Convergence,” Applied Mathematics and Computation, Vol. 183, No. 1, 2006, pp. 659-684. doi:10.1016/j.amc.2006.05.116

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.