Journal of Applied Mathematics and Physics

Volume 6, Issue 5 (May 2018)

ISSN Print: 2327-4352   ISSN Online: 2327-4379

Google-based Impact Factor: 1.00  Citations  

Mathematical Modeling of Shock Waves in Inhomogeneous Viscoelastic Two-Component Media

HTML  XML Download Download as PDF (Size: 368KB)  PP. 997-1005  
DOI: 10.4236/jamp.2018.65086    501 Downloads   1,377 Views  Citations

ABSTRACT

Mathematical modeling of two-component media with a saturated liquid began over 90 years with studies of the consolidation of soils. Two-component must be taken into account when solving a significant number of applied problems arising in various areas of human activity (soils, foams, various cement mortars, sand, porous ceramics, porous sintered composite materials, etc.). Two-component media are widely used in the national economy. For example, in the construction of new airfields and the restoration of destroyed, where the building materials used contain a significant number of voids. The study of wave processes is also very important for the development of new diagnostic methods, new technologies for creating two-component environments that could be applied in the field of engineering, construction, instrumentation, metallurgy, nuclear power and the defense capability of the country. However, the complexity of describing the effects of the interaction of components, heat transfer, and other related processes has led to the fact that until now the generally accepted models (elastic medium-liquid) for a fluid-saturated two-component medium have not been fully developed. Therefore, it is of interest to develop a mathematical two-component model when one of the components represents an inhomogeneous viscoelastic medium and the other is a compressible fluid. The presence and degree of porosity in materials is accounted for by a porosity coefficient equal to the ratio of the pore volume to the total volume occupied by the medium.

Share and Cite:

Polenov, V. and Chigarev, A. (2018) Mathematical Modeling of Shock Waves in Inhomogeneous Viscoelastic Two-Component Media. Journal of Applied Mathematics and Physics, 6, 997-1005. doi: 10.4236/jamp.2018.65086.

Cited by

[1] МОНОХРОМАТИЧЕСКИЕ ВОЛНЫ В ТРЕХКОМПОНЕНТНЫХ ПОРИСТЫХ СРЕДАХ
2021
[2] О РАСПРОСТРАНЕНИИ ВОЛН В ТРЕХКОМПОНЕНТНЫХ ПОРИСТЫХ СРЕДАХ
ЕВРАЗИЙСКИЙ СОЮЗ УЧЕНЫХ. СЕРИЯ: ТЕХНИЧЕСКИЕ И ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ, 2021
[3] ON PROPAGATION OF WAVES IN THREE-COMPONENT POROUS MEDIA
EurasianUnionScientists, 2021
[4] ВЕРОЯТНОСТНЫЙ МЕТОД ДИНАМИЧЕСКОГО ДЕФОРМИРОВАНИЯ НЕОДНОРОДНЫХ ДВУХКОМПОНЕНТНЫХ СРЕД
2020
[5] Динамическое деформирование двухфазных зернистых сред с учетом фазовых переходов
Национальная ассоциация ученых, 2020
[6] The dynamic deformation of three-component porous media
2020
[7] Динамическое деформирование термоупругих пористых сред с учетом конечности скорости распространения тепла
2019
[8] Математическое моделирование процесса затухания волн в наследственно-упругих пористых средах
2019
[9] МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ СФЕРИЧЕСКИ-СИММЕТРИЧНЫХ ВОЛН В ТРЕХКОМПОНЕНТНЫХ СРЕДАХ
2019
[10] Распространение сферически-симметричных волн в двухкомпонентных пористых средах
2019
[11] Сферически-симметричные волны в однородных двухкомпонентных средах
2019
[12] Математическое моделирование плоских волн в двухкомпонентных волноводах
2018
[13] Амплитудные спектры идентификации вибрационных процессов
2018

Copyright © 2025 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.