Journal of Materials Science and Chemical Engineering
Volume 3, Issue 1 (January 2015)
ISSN Print: 2327-6045 ISSN Online: 2327-6053
Google-based Impact Factor: 1.21 Citations
Using SiO2 Nanopowders in Anode Catalyst Layer to Improve the Performance of a Proton Exchange Membrane Fuel Cell at Low Humidity ()
Affiliation(s)
ABSTRACT
In this study, the transfer method is employed to add hydrophilic SiO2 nanopowders to a Pt/C catalyst ink to form an anode catalyst layer on a proton exchange membrane (PEM). The SiO2-layered membrane electrode assembly improves the performance of the PEM under low- or zero-humidification conditions. When the PEM fuel cell (PEMFC) undergoes electrochemical reaction, the moisture content of the PEM exhibits a substantial influence on the transmission of protons. To ensure the moisture content remains high, an external humidifier is typically employed to humidify the majority of PEMFCs. However, self-humidifying PEMFCs could utilize the water produced by the fuel cell reaction, thereby eliminating the need for an external humidifier. In this study, various SiO2 loadings were added to an anode catalyst layer, and the cell temperature and gas humidification conditions were adjusted to determine the influence of the SiO2 loadings on the fuel cell performance. The results show that adding SiO2 is preferable to not adding SiO2 when the fuel cell temperature is 50°C.
KEYWORDS
Share and Cite:
Cited by
Copyright © 2025 by authors and Scientific Research Publishing Inc.
This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.