Journal of Mathematical Finance
Volume 4, Issue 2 (February 2014)
ISSN Print: 2162-2434 ISSN Online: 2162-2442
Google-based Impact Factor: 1.39 Citations
Bayesian Estimation of Non-Gaussian Stochastic Volatility Models ()
Affiliation(s)
ABSTRACT
In this paper, a general Non-Gaussian Stochastic Volatility model is proposed instead of the usual Gaussian model largely studied. We consider a new specification of SV model where the innovations of the return process have centered non-Gaussian error distribution rather than the standard Gaussian distribution usually employed. The model describes the behaviour of random time fluctuations in stock prices observed in the financial markets. It offers a response to better model the heavy tails and the abrupt changes observed in financial time series. We consider the Laplace density as a special case of non-Gaussian SV models to be applied to our data base. Markov Chain Monte Carlo technique, based on the bayesian analysis, has been employed to estimate the model’s parameters.
KEYWORDS
Share and Cite:
Cited by
Copyright © 2025 by authors and Scientific Research Publishing Inc.
This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.