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ABSTRACT 
In this paper, a general Non-Gaussian Stochastic Volatility model is proposed instead of the usual Gaussian 
model largely studied. We consider a new specification of SV model where the innovations of the return process 
have centered non-Gaussian error distribution rather than the standard Gaussian distribution usually employed. 
The model describes the behaviour of random time fluctuations in stock prices observed in the financial markets. 
It offers a response to better model the heavy tails and the abrupt changes observed in financial time series. We 
consider the Laplace density as a special case of non-Gaussian SV models to be applied to our data base. Markov 
Chain Monte Carlo technique, based on the bayesian analysis, has been employed to estimate the model’s para-
meters. 
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1. Introduction 
The Stochastic Volatility models have been widely used to model a changing variance of time series Financial 
data [1,2]. These models usually assume Gaussian distribution for asset returns conditional on the latent 
volatility. However, it has been pointed out in many empirical studies that daily asset returns have heavier tails 
than those of normal distribution. To account for heavy tails observed in returns series, [3] proposes a SV model 
with student-t-errors. This density, although considered as the most popular basic model to account for heavier 
tailed returns, has been found insufficient to express the tail fatness of returns. 

[4] fitted a student-t-distribution and a Generalized Error Distribution (GED) as well as a normal distribution 
to the error distribution in the SV model by using the simulated maximum likelihood method developed by [5,6]. 
[7] considered a mixture of normal distribution as the error distribution in the SV model. He used a bayesian 
method via MCMC technique to estimate the model’s parameters. According to Bayes factors, he found that the 
t-distribution fits the Tokyo Index Return better than the normal, the GED and the normal mixture. However the 
mixture of normal distributions gives a better fit to the Yen/Dollar exchange rate than other models. 

This survey of literature proves that we can’t affirm absolutely that one distribution is better than another one. 
The selection of a density should be based on other parameters. In our work, we consider a general model of non- 
Gaussian centered error distribution. We prove that the efficiency of a specification of SV model depends on the 
dispersion of the data base. In fact, we find that when the data base is very dispersed, the Gaussian specification 
behaves better than the non-Gaussian one. On the contrary, if the data base presents a little dispersion measure, 
the non-Gaussian centered error specification will behave better than the Gaussian one. For this reason, we 
propose a general SV model where the diffusion of the stock return follows a non-Gaussian distribution. 
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Since it is not easy to derive the exact likelihood function in the framework of SV models, many methods are 
proposed in the literature to estimate these models. The four major approaches are: 1) the Bayesian Markov 
Chain Monte Carlo (MCMC) technique suggested by [8], 2) the efficient method of moments EMM proposed by 
[9], 3) the Monte Carlo likelihood MCL method developed by [10], and 4) the efficient importance sampling 
EIS method of [11]. In this work, we consider the MCMC method for the estimation of the model’s 
parameters. 

The rest of the paper is organized as follow: in the second section, we present, in a comparative setting, the 
usual Gaussian and the general non-Gaussian SV models. Bayesian parameter estimator’s and the MCMC 
algorithm are described in the third section. The fourth section develops an application of a non-Gaussian 
centered error density. In particular, we consider the Laplace density as an example of non-Gaussian distribution 
for the data base that we have studied. We conclude in the last section. 

2. Stochastic Volatility Model with Gaussian/Non-Gaussian Noise 
As any nature field, Finance has adopted a simple model, developed over the years, that attempts to describe the 
behaviour of random time fluctuation in the prices of stocks observed in the markets. This model assumes that 
the fluctuation of the stock prices follow a log-normal probability distribution function. The simple log-normal 
assumption would predict a Gaussian distribution for the returns with variance growing linearly with the time 
lag. What is actually found is that the probability distribution for high frequency data usually deviates from 
normality presenting heavy tails. 

In this section, we present the classical Gaussian SV model and we introduce a non-Gaussian centered error 
distribution as an extension to the SV models. 

2.1. Gaussian Stochastic Volatility Model 
The log Stochastic Volatility model is composed of a latent volatility equation and an observed return equation 
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where s
tW  and v

tW  are two independent Wiener motions. The parameter κ  is the mean reversion of the 
volatility equation, θ  represents the expected of the Log volatility and vσ  is interpreted as the dispersion 
measure of the volatility. 

According to the Euler discretization schema, we get 
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where 1log logt t tY S S −= −  and ( ),t tν  follow the bivariate centered Normal distribution ( )20,N I  with the 
identity matrix 2I  of covariance. Here, the new parameters α  and β  are related in deterministic way to κ  
and θ , kα θ=  and 1 kβ = − . The parameter β  represents the persistence of the volatility process, α  is 
its expected value and vσ  can be interpreted as the volatility of the volatility. Note that the errors t  and tν  
are uncorrelated. 

In order to consider a more general case of SV model, we propose in the next section, a non-Gaussian 
centered error distribution for t . 

2.2. Non-Gaussian Stochastic Volatility Model 
We consider a Stochastic Volatility model with a non-Gaussian noise where the return tY  follows a non- 
Gaussian distribution with a mean equal zero and a variance governed by stochastic effects. The proposed model 
is given by: 
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The innovation term in the return equation t  follows a Non-Gaussian centered distribution with the mean 
zero and the variance equal 2σ . The most popular non-Gaussian centered error distributions that has been 
applied in SV models are: Student distribution [3], Generalized Error Distribution [4], Mixture of Normal 
distribution [7], α -stable distribution [12], Laplace distribution, Uniform distribution....Among these non- 
Gaussian centered error density, we have chosen the Laplace one for being applied to SV model. We estimate 
the model’s parameters and we apply it to tha CAC 40 index returns data. 

3. Bayesian Estimation of Non-Gaussian Stochastic Volatility Model 
A long standing difficulty for applications based on SV models was that the models were hard to estimate 
efficiently due to the latency of the volatility state variable. The task is to carry out inference based on a 
sequence of returns ( )1, , Ty y y ′=   from which we will attempt to learn about ( )1, , kθ θ θ ′=  , the parameters 
of the SV model. [13] uses the method of moments to calibrate the discrete time SV models. [14] improves the 
inference as they exploit the generalized method of moments procedure (GMM). The Kalman filter was used by 
[15]. 

Recently, simulation based on inference was developed and applied to SV models. Two approaches were 
brought forward. The first was the application of Markov Chain Monte Carlo (MCMC) technique; ([8,16-18]). 
The second was the development of indirect inference or the so-colled Efficient Method of Moments; ([19-21]). 

In our paper, we have chosen the bayesian MCMC approach for the estimation of the parameter’s and the 
volatility vector. 

For the non-Gaussian SV model, we define the parameter set ( )2, , vα β σΩ =  and the state vector ( ) 1

T
t t

V V
=

= .  

We can obtain the joint distribution ( ),P V YΩ  from ( ),P V YΩ  and ( ),P V YΩ . Bayes rule states that the 
posterior distribution can be factorized into its constituent components: 

( ) ( ) ( ) ( ), ,P V Y P Y V P V PΩ ∝ Ω ⋅ Ω ⋅ Ω  

where ( ),P Y V Ω  is the likelihood function, ( )P V Ω  is the distribution of the state variables, and ( )P Ω  is 
the distribution of the parameters, commonly called the prior. 

[17] assume conjugate priors for the parameters ,α β  following Normal distribution ( ), Nα β   and 2
υσ  

following an Inverse Gamma distribution ( )2 IGυσ   which implies that the posteriors densities for the 
parameters are proportional to 
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For υσ , we have that 
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With these posterior densities, the Gibbs sampler is applied and we get a Markov Chain for each parameter 
and thus the parameter’s estimator. The only difficult step arises in updating the volatility states. According to [8] 
the full joint posterior for the volatility is 
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as a function of tV , the conditional variance posterior is quite complicated (we can’t simulate directly from this 
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density) 
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The simulation of the posterior density of the parameters requires the application of the Gibbs Sampler. 
However, we prove explicit expression for the simulated parameters. In fact, after some simple calculations 
applied to the posterior density, we find the following expression for the iterated parameters by the Bayesian 
method in the thj  iteration 
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For the second parameter β , with the same method, we can prove that: 
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For the parameter υσ , the volatility of volatility, the prior density is an Inverse Gamma ( ),IG σ σα β  with 
parameters ( ),σ σα β , the expression of the estimators of this parameter is 

( )( )
( ) ( ) ( ) ( )( )21 1

1
2 1

1 2 Log Log
.

2 1

T
j j j j

t tj t
v

V V

T

σ

σ

β α β
σ

α

− −
−

=

+ − −
=

+ −

∑
                 (11) 

We have considered some statistical model distributions characterized by different density for the noise terms. 
For each density listed in the second section (Student, Laplace, Uniform), we can formulate one particular 
specification for SV model. We have conducted a Chi-deux test to select (among these three densities) the 
appropriate error distribution to our data base. The results indicate that the Laplace density is the suitable 
distribution compared to the student and the uniform ones. In the second step, we will take the Laplace SV 
model such as a particular case of non-Gaussian SV model to be compared to the standard Gaussian distribution 
model that is the Normal one. The next section will present the application study. 

3.1. Application 
In this section, we consider one particular case of non-Gaussian SV model that is the Laplace one. In fact, the 
application of the Chi-deux test has proved that this model is the more appropriate to our data base. 

The study of this density is very interesting. In fact, Laplace density has been often used for modeling 
phenomena with heavier than normal tails for growth rates of diverse processes such as annual gross domestic 
product [22], stock prices [23], interest or foreign currency exchange rates [24,25], and other processes [26]. 
However, the Laplace density is not yet explored in the context of Stochastic Volatility model. 
The Laplace SV model is defined as: 
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The innovation term in the return equation ( )0,1t L , ( )0,1t Nυ  . 
The probability density function of a Laplace density is expressed as: 
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In order to prove the efficiency of the Laplace model, we conduct a simulation analysis. 

Simulation Analysis 
This section illustrates our estimation procedure using the simulated data. We generate 1000 observations from 
the Stochastic Volatility Laplace (SVL) model given by equation (3.12), with true parameters 0.077α = − , 

0.929β = , 2 0.142σ = . True parameters are chosen arbitrary. The following prior distributions are assumed 
( )0,1Nα  , ( )1,1Nβ  , ( )2 25,1IGσ 

, (where IG represent the Inverse Gamma density). 
We draw 6000 posterior samples of MCMC run. We discard the initial 2000  samples as burn in period. 

Table 1 gives the parameter’s estimates for posterior means and standard deviation. Comparison of the Mean 
Squared Errors calculated with the Normal Stochastic Volatility model are larger than those calculated with the 
Laplace Stochastic Volatility model. This result proves that the Laplace Stochastic Volatility model better fits 
the model’s parameters and state variables. 

The second step in our simulation study consists of testing the hypothesis that the choice of a specification is 
based on the dispersion measure of the data base. So, we simulate data bases with different variances. Results 
prove that when the data base is characterized by a little dispersion measure, the Laplace SV model performs a 
better specification for the parameters. In fact, the calculation of the Mean Squared Errors for the Laplace and 
the Normal model prove that this measure is greater for the Gaussian model. So, we should consider the 
estimators deduced from the Laplace (non-Gaussian) specification. 

On the contrary, when the data base is very dispersed, it has been proved that the Gaussian SV model offers 
more precise estimation for the parameters. 

From this simulation study, we can conclude that the selection of a model specification depends on data base 
characteristics. If we reject the normality assumption for a data base, we can accept it for another one. 

 
Table 1. Simulation results for the Laplace and the Normal models. 

Parameter True Mean(1) Stdev.(1) Mean(2) Stdev.(2) MSE 

Laplace Model       

α −0.077 −0.1008 7.85 × 10−7 −0.085 5.82 × 10−7 7.85 × 10−7 

   [−0.1009, −0.1007]  [−0.086, −0.084]  

β 0.929 0.906 5.78 × 10−7 0.9233 5.71 × 10−7 5.78 × 10−7 

   [0.9064, 0.9062]  [0.92, 0.93]  

σ 0.377 0.3593 1.46 × 10−6 0.367 1.28 × 10−6 0.0530 

   [0.3592, 0.3594]  [0.36, 0.37]  

Normal Model       

α −0.077 −0.078 2:1 10−7 −0.0927 2.02 × 10−6 2.099 × 10−6 

   [−0.079 −0.077]  [−0.0928, −0.0926]  

β 0.929 0.9073 2.56 × 10−7 0.916 1.57 × 10−6 2.56 × 10−6 

   [0.9072, 0.9074]  [0.915, 0.917]  

σ 0.377 0.3639 1.06 × 10−6 0.353 3.87 × 10−6 0.0536 

   [0.3638, 0.3640]  [0.352, 0.354]  

Notes: 1. This table provides a summary of the simulation results for the Laplace and the Normal model. 1000 observations were simulated off the 
true parameters. We report in the third and the fourth column the average (mean(1)) and the standard deviation (Stdev.(1)) of each parameter 
calculated with 6000 simulated path. After discarding a burn in period of 2000 iterations, we compute the mean (mean(2)), the standard deviation 
(Stdev.(2)) and the mean squared error for each parameter. Results are presented in the three last columns. We present the confidence interval 

between brackets. 2. MSE for a parameter θ  is calculated with the following formula: ( )2

1

1 ˆN

iiN
θ θ

=
−∑  
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3.2. Empirical Application 
After approving our methodology using simulated data, we apply our MCMC estimation method to daily stock 
returns data. On our work, we focus on the study of the French stock market index: the CAC40 index returns. The 
sample size is 5240 observations. The log difference returns are computed as ( ) ( )( )1100 log logt t tY P P−= × − ; 
where tP  is the closing price on day t . 

Table 2 summarizes the descriptive statistics of the returns data. The series reveal negative skewness proving 
the asymmetry of the return distribution. The Kurtosis equal 24.86. The series present a large Kurtosis ( )3 . 
So we reject the normality assumption. This conclusion is also verified by statistical test of normality. 

Figure 1 shows the data histogram, the Normal and the Laplace one. It appears very clear that the distribution 
of our database is very close to the Laplace distribution, especially in the tails. In fact, when the Normal density 
ignores the queue observations, Laplace histogram represents these points so, the later density is more 
representative to our data then the former one. 

In Table 3, we present the KL divergence that calculates the distance between the true (empirical) and the 
estimated distribution (Laplace, Normal). When the value of this criterion is large, the estimated distribution 
differs significatively from the true distribution. On the contrary, when this measure is small, we affirm that the 
estimated distribution is similar to the true one. For our data base, the KL divergence equals 0.0656 between 
data density and Laplace density. It equals 1.1653 between data density and Normal density. This proves that the 
non-Gaussian specification is more accurate to the data considered than the standard Gaussian specification. 

3.3. Estimation Results 
In the last section, we have rejected the Gaussian assumption for the return series of the CAC40 index. 
 

Table 2. Summary statistics for daily return data on the CAC40 from January 2, 1987 to November 30, 2007. 

Observations Mean Stdev. Skewness Kurtosis Minimum Maximum  

5240 0.0158 1.657 −0.1737 24.8566 −14 14  

Note: This table provides summary statistics for daily return data on the CAC40 French Stoch Exchange index from January 2, 1987 to November 30, 
2007. 
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Figure 1. Database, Laplace, student and normal histogram. Note: The histograms of this figure are obtained with 
Microsoft excel program. For the first histogram, that represents the database density, we have classified our obser-
vation by class, we have computed the frequency in each class and the probability of each observation, and then we 
have represented the histogram. For the Laplace, Student and Normal density, we have generated. With Matlab, 
random vectors that follow each distribution with parameters (mean, variance) of the true database. Then, we com-
pute the frequency and the probability of each observation and we represent the histogram with Microsoft excel. 
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Therefore, we have proven that the Laplace density is more consistent to our data base. In this section, we will 
apply the Laplace stochastic volatility model, that we have introduced in Equation (12), to the analysis of the 
CAC40 index returns. The number of MCMC iterations is 10000 and the initial 2000 samples are discarded. 
Table 4 reports the estimation results: the posterior means, standard deviations, and the Mean Squared Errors 
for CAC40 data. 

The estimates of the volatility parameters ( )2, ,α β σ  are consistent with the results of the previous literature. 
The posterior mean of β  is close to one, which indicates the well known high persistence of volatility on asset 
returns. Table 4 presents, also, the MSE calculated for each parameter for the Laplace and the Normal model. It 
seems clear that the Laplace model generates the little errors, except for the σ  parameter. This result supports 
the choice of the non-Gaussian Stochastic Volatility model relatively to the Gaussian one. 

In order to test the ability of the Laplace model to predict future returns, we perform an out of sample analysis. 
We consider 4000 observations for the inference of parameters. We simulate (5240 - 4000) artificial 
observations from the Laplace model and the Normal one. We compare each simulated vector of returns with 
the remainder observations. 

In Table 5, we present the MSE found between the true observation vector and the returns generated with the 
Normal model in the third column. The second column shows the MSE calculated between true observations 
and returns vectors generated with the Laplace model. It seems clear that the Laplace model predict returns more 
accurately than the Normal one. In fact, the MSE obtained with the Laplace model is smaller than that obtained 
with the Normal model. The Laplace SV model generates a Mean Squared Error less than the errors generated  
 

Table 3. Kullback leiber divergence. 

Compared Density KL Divergence 

Data density/Laplace density 0.0656 

Data density/Normal density 1.1653 

Note: This table summarizes the Kullback Leiber Divergence calculated between the true density and the estimated density: non-Gaussian (Laplace) 
in the second row, Gaussian (Normal) in the last row. 
 

Table 4. Parameter estimates for the CAC40 index return data. 

Parameters SV Laplace SV Normal 

α −0:0324 (7.5 × 10−4) 0.1344 (0.0029) 

 7.51 × 10−4 0.029 

β 0.8114 (5.5 × 10−6) 0.8954 (6.37 × 10−5) 

 5:5 10−6 6.37 × 10−5 

σ 0.6563(3:7 0−4) 0.9216 (0.0032) 

 0.0513 0.0161 

MSE (Model) 55.7261 423.9717 

Note: Parameter estimates for the CAC40 index data from January 2, 1987 to November 30, 2007. For each parameter, we report the mean of the 
posterior density, the standard deviation of the posterior in parentheses and the MSE. Estimation for the Laplace SV model are presented in the 
second column. Results for the Normal model are given in the third column. The last row gives the MSE calculated for the whole model. The first 
number represents the MSE between estimated returns through Laplace model and the observed returns. The second number represents the MSE for 
estimated returns with the normal model and observed returns. 
 

Table 5. Mean squared errors for the out of sample analysis. 

 SV Laplace SV Normal 

MSE 9.1438 22.7814 

Notes:1. In this table we present the out of sample analysis results. We take the first 4000 empirical observations to infer the parameter estimates for 
the Laplace SV model and the Normal SV model. We generate (5240 - 4000) artificial observations with the two model and we calculate the MSE 
between observed remainder returns and the simulated vector of return with Laplace model and with Normal model. 2. MSE for returns vector is 

calculated with the following formula: ( )2

1

1 ˆT

ii
y y

T =
−∑ . 
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by the Normal SV model. This result indicates that the Laplace model (non-Gaussian) is able to predict returns 
better than the Normal one or the standard Gaussian one. 

4. Conclusions 
In this paper, we have considered the inference of SV model with non-Gaussian noise. By applying a Chi-deux 
test, we have chosen the suitable non-Gaussian distribution error for the data base considered in our study 
among different non-Gaussian distribution that has been considered in last studies (such as: Student, Uniform, 
Mixture of Normal, α -stable, ...). The Laplace SV model has been studied against the classical Gaussian SV 
model. After the simulation analysis, we have concluded that the selection of a model specification in favor of 
another depends on characteristics of data base. In fact, when data present little dispersion, non-Gaussian 
specification provides better estimation for the model parameters. On the contrary, when the dispersion of the 
data is very large, the standard gaussian specification is retained. 

We have performed MCMC technique for the stochastic volatility model when returns follow a Laplace 
distribution allowing for an important characteristics of returns dynamic: Heavy tails or leptokurticity. 

An application to daily CAC40 index returns over the years (1987-2007) illustrates the ability of the Laplace 
model to deal with heavy tails better than the Log-Normal model. An out of sample analysis proves that the 
Laplace model better predicts future returns. These results have been reached according to the calculation of the 
Mean Squared Error calculated between estimated parameters and true parameters. 
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