Advances in Pure Mathematics

Volume 13, Issue 3 (March 2023)

ISSN Print: 2160-0368   ISSN Online: 2160-0384

Google-based Impact Factor: 0.48  Citations  

Zipf’s Law, Benford’s Law, and Pareto Rule

HTML  XML Download Download as PDF (Size: 546KB)  PP. 174-180  
DOI: 10.4236/apm.2023.133010    245 Downloads   1,997 Views  Citations
Author(s)

ABSTRACT

From a basic probabilistic argumentation, the Zipfian distribution and Benford’s law are derived. It is argued that Zipf’s law fits to calculate the rank probabilities of identical indistinguishable objects and that Benford’s distribution fits to calculate the rank probabilities of distinguishable objects. i.e. in the distribution of words in long texts all the words in a given rank are identical, therefore, the rank distribution is Zipfian. In logarithmic tables, the objects with identical 1st digits are distinguishable as there are many different digits in the 2nd, 3rd… places, etc., and therefore the distribution is according to Benford’s law. Pareto 20 - 80 rule is shown to be an outcome of Benford’s distribution as when the number of ranks is about 10 the probability of 20% of the high probability ranks is equal to the probability of the rest of 80% low probability ranks. It is argued that all these distributions, including the central limit theorem, are outcomes of Planck’s law and are the result of the quantization of energy. This argumentation may be considered a physical origin of probability.

Share and Cite:

Kafri, O. (2023) Zipf’s Law, Benford’s Law, and Pareto Rule. Advances in Pure Mathematics, 13, 174-180. doi: 10.4236/apm.2023.133010.

Cited by

[1] Testing benford and universal laws on gambling and betting data in Romania
Maniu, C Brandas, MP Cristescu… - Annals of Operations …, 2023
[2] The Entropy of Numbers and the Riemann hypothesis

Copyright © 2025 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.