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Abstract 
From a basic probabilistic argumentation, the Zipfian distribution and Ben-
ford’s law are derived. It is argued that Zipf’s law fits to calculate the rank 
probabilities of identical indistinguishable objects and that Benford’s distri-
bution fits to calculate the rank probabilities of distinguishable objects. i.e. in 
the distribution of words in long texts all the words in a given rank are iden-
tical, therefore, the rank distribution is Zipfian. In logarithmic tables, the ob-
jects with identical 1st digits are distinguishable as there are many different 
digits in the 2nd, 3rd… places, etc., and therefore the distribution is accord-
ing to Benford’s law. Pareto 20 - 80 rule is shown to be an outcome of Ben-
ford’s distribution as when the number of ranks is about 10 the probability of 
20% of the high probability ranks is equal to the probability of the rest of 80% 
low probability ranks. It is argued that all these distributions, including the 
central limit theorem, are outcomes of Planck’s law and are the result of the 
quantization of energy. This argumentation may be considered a physical 
origin of probability. 
 
Keywords 
Zipf’s Law, Benford’s Law, Pareto 20 - 80 Rule, Planck’s Law, Max Entropy 

 

1. Introduction 

Zipf’s law and Benford’s law are long-tail rank distributions appearing in many 
copious statistical ensembles [1]. Both laws are considered empirical laws. In 
1881, Newcomb [2] found that the probability distribution ( )p n  of the decimal  

digits in the 1st digits of the logarithmic table obeys ( ) 1log 1p n
n

 = + 
 

, where  

1 9n≤ ≤   . Benford [3] found in 1938 that Newcomb’s distribution applies to 
many more ensembles and not only to the logarithmic table. Later [4] [5] the law 
generalized for N ranks to be, 
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Eleven years later, in 1949, Zipf [6] discovered that in long texts, in several 
languages, the most frequent word appears twice as much as the second most 
frequent word, the second most frequent word appears twice as much as the 
fourth frequent word, and so on. The Zipfian distribution, similarly to Benford’s 
law, appears in many ensembles, like populations of cities, bestsellers lists, etc. 
Zipf’s law can be written [7] [8] as, 

( ) 1,z
N

p n N
nH

= ,                        (2) 

where 1

1
N n

NH
n=

= ∑  is the Nth harmonic number. 

Both Zipf’s law and Benford’s law are obtained from the maximum entropy 
distribution of indistinguishable balls in N distinguishable boxes, where the 
boxes are the ranks and the number of the balls is much larger than the number 
of boxes [8]. In Figure 1, the Benford distribution and Zipf distribution for 10 
ranks are plotted. It is seen that Benford’s law and Zipf’s law are similar but not 
identical. 

Hereafter, we derive both laws using basic probabilistic tools and explain the 
differences between them. In addition, we derive the Pareto 20 - 80 rule of 
thumb for Benford’s law and discuss their origin and limitations. 

2. Zipf’s Law 

Suppose that there are N identical biscuits and a mouse in a closed space. The 
mouse eats every day one biscuit. What is the probability of a biscuit being eaten 
on the d day? 

The maximum survival days n that a biscuit has at the day d is, 

1n N d= + − ,  

where 1 d N≤ ≤   . 
 

 
Figure 1. The red bars are the Zipfian distribution and the blue bars are Benford’s law 
distribution for 10 ranks. 
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On the first day, 1d = , the biscuit has maximum n N=  days to survive. 
Where d N= , the biscuit has only 1n =  day. The probability p of the biscuit 
to be eaten is inversely proportional to n, namely, 1p n∝ , therefore, the nor-
malized probability distribution is, 

( )
1

1
1,

1Z
N N
n

np n N
nH

n=

= =
∑

, 

which is Zipf’s law. 
We see that the probability of a biscuit being eaten on the day n obeys Zipf’s 

law. This model, which is similar to the coupon collector problem, is identical to 
the word distribution of long texts. Suppose that one wants to write a text of N  

words. The first word has a probability of 
1
N

, the second word 
1

1N −
, etc. In 

the discussion, we explain why the Zipf distribution is so general. 

3. Benford’s Law 

Benford’s law is obtained by applying the Riemann sum to Zipf’s law [8] [9]. If 
we assume that 𝑛𝑛 is continuous, then, 

11 d 1ln 1
n

n n

n
n n n

+

′=

′  ≈ = + ′  ∫  and ( )1

1

d ln 1
N

N n

nH N
n

+

′=

′
≈ = +

′∫  

Substitute these integrals in Zipf’s law (Equation (2)) and we obtain Benford’s 
law (Equation (1)). 

Benford’s law seems to approximate the more accurate Zipf’s law. However, 
under certain conditions, Benford’s law is more accurate than Zipf’s law. For 
example, suppose that a pig that eats M biscuits per day replaces the mouse in 
the example above. In this case, a day becomes a rank that contains M biscuits. 
Since in a day there are M biscuits, the probability of a biscuit m to be eaten in 
the n day is, 

( ) 1 1, ,Z
NM

p n m NM
H nM m

= ⋅
+

.                 (3) 

The probability to be eaten in the whole nth day is 

( ) 1
1

1 11, M
Z m

NM

p n NM
H nM m

+

=
+ = ⋅

+∑ . 

Since ( )
1

11

1M
nMn Mm H H

nM m
+

+=
= −

+∑ , therefore, 

( ) ( )11, nMn M
Z

NM

H H
p n NM

H
+ −

+ = . 

for 1M � , we can use the approximation  

( )lim lnM MH M γ→∞ = + , 

where 0.577γ ≈  is the Euler-Mascheroni constant. Therefore, 

https://doi.org/10.4236/apm.2023.133010
https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant


O. Kafri 
 

 

DOI: 10.4236/apm.2023.133010 177 Advances in Pure Mathematics 
 

( )
( ) [ ]ln 1 ln 1 11, ln 1Z

NM NM

n M nM
p n NM

H H n
γ γ+ − + −    + ≈ = + 

 
.    (4) 

Equation (4), when renormalized, yields Benford’s law. It is seen that Benford’s 
law is obtained when there are sub-distributions inside Zipf’s ranks.  

4. Pareto 20 - 80 Rule of Thumb 

In 1906, Italian economist Vilfredo Pareto [10] observed that 20% of the people 
in his country owned 80% of the nation’s wealth. That rule was found to apply 
with uncanny accuracy to many situations and be useful in many disciplines, in-
cluding the study of business productivity. Hereafter we show that the Pareto 
principle can be easily calculated from Benford’s law. To do so we have to find 
the rank n  which is the sum of the probabilities up to n  is equal to the sum 
above it. In Benford’s law, the rank n  obeys, 

1
11 1ln 1 ln 1n N
nn nn n
+

= =

   + = +   
   

∑ ∑ , 

which yields; ( ) ( )2ln 1 ln 1Nn + = + , or 

1 1n N= + − .                         (5) 
The Pareto ratio is simply, 

1:
1 1

nNn
N N

+ −
+ +

                        (6) 

Therefore ( )1n N +  is the fraction of the ranks that have equal probability 
to the rest of the ranks and according to the Pareto rule is 0.2. 

Zipf’s law does not fit for Pareto ratio calculation as the distribution within 
the ranks does not exist and therefore none-integer n  has no meaning. Ben-
ford’s law is used for fraud detection of financial reports [11] [12]. However, 
Benford’s distributions appear in many other statistics, of which a notable one is 
wealth distribution [13]. Pareto 20 - 80 distribution and Gini inequality index 
in free economies are in agreement with Benford’s law [14]. However, as was 
shown Zipf’s law, Benford’s law and Pareto’s rule are sensitive to the number of 
ranks N. Namely, the same distribution of probabilities yields different ratios 
between the ranks probabilities when N is changed. In Figure 2, we see that  
 

 
Figure 2. ( )1n N +  is the fraction of the ranks that has the same probability as the rest 

of the ranks for the Benford distribution. The Pareto’s 20 - 80 rule ( )1 0.2n N + ≈  is va-

lid in the vicinity of N = 10 ranks. 
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around 10N ≈ , the ratio 20 - 80 is a pretty good approximation of Benford’s 
law distribution which fits better for the economy in which the incomes within 
the ranks are varying. 

5. Discussion 

The unequal probability distribution of the power laws is counterintuitive. If all 
the ranks have an equal probability to have an object, why they don’t have an 
equal amount of objects? The explanation comes from statistical mechanics, An 
ensemble of ranks and their probabilities to have indistinguishable objects is 
analogous to a microcanonical ensemble of N boxes and n N  balls, where 

n  is the average number of balls in a rank. The thermodynamic microcanon-
ical ensemble conserves material, volume, and energy. In the boxes and balls en-
semble, the material is the boxes and their number N represents the conserva-
tion of volume. The number of balls represents the conservation of energy. Ac-
cording to the second law, in equilibrium, both the probabilities of the boxes to 
have a ball is equal and, all the microstates’ probabilities are equal. A microstate 
(a state of the ensemble) is a distinguishable configuration of all the balls in all 
the boxes [7]. These requirements are an outcome of the second law, which one 
of its definitions states that in equilibrium the entropy is maximum. Planck cal-
culated the distribution of the balls in the boxes in 1901 [15] [16]. He maximized 
the entropy of a set of distinguishable oscillators having an average energy kBT, 
and each ball (photon) had an energy hv. Where kB is the Boltzmann constant, T 
is the temperature, h is the Planck constant, and v is the photon’s frequency. The 
famous Planck result is,  

1

exp 1
B

n
hv

k T

=
 

− 
 

. 

In the Planck equation, n is the occupation number of an oscillator in an en-
semble in which the average energy is kBT, and each photon has energy hv,  

therefore Bk T
hv

 is the average number of photons in an oscillator. If we desig-

nate Bk T n
hv

=  we can write the Planck equation as,  

[ ] 1
1exp 1

n

n

=
 

−  
 

.                      (7) 

In equilibrium for a given temperature and frequency all the oscillators should 
have the same number of photons n . Since v and T can have any value, n  
is not necessarily an integer, however, quantum mechanics enables, according to 
Equation (7), only an integer number of photons [ ]n  to exist. Therefore we can 
calculate the average number of balls [ ]( )n f n=  as a function of the integer 
number of balls. In the case that 1n � , ( )exp 1 1 1n n≈ + , we obtain that 
n n≈ . This is the classical result in which the occupation number and the 
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number of balls are equal. Thus the probability is given by, 

( ) 1 1p n
n n

= ≈ , 

that when normalized to N boxes, yields Zipf’s law as in Equation (2). In the 
general case Equation (7) yields  

( ) 1 1ln 1p n
n n

 = = + 
 

.                    (8) 

When Equation (8) is normalized to N boxes it becomes Benford’s law of Eq-
uation (1). 

In the case when 1n � , 1 1
n
� , or 1 1exp 1 exp

n n
   − − ≈ −   
   

, the proba-

bility to find n balls, namely 

( ) 1 1 1exp
1exp 1

p n
n n

n

 = = ≈ −    − 
 

.              (9) 

When normalized Equation (9) yields the canonical distribution namely. 

( )
1

1

1exp
,

1expN

n

np n N

n
+

=

 − 
 =

 − 
 

∑
. 

The normalization factor  

1
1 1

1 1exp expN
n nZ

n n
+ ∞

= =

   = − ≈ −   
   

∑ ∑  

is the canonical partition function, which yields the central limit theorem in the 
limit of very small n  [9].  

6. Summary 

Zipf’s law, Benford’s law, and Pareto’s 20 - 80 rule are considered empirical laws. 
We argue that Zipf’s law is the rank distribution of indistinguishable objects, 
while Benford’s law is the rank distribution in which the objects within the rank 
are distinguishable. Pareto’s 20 - 80 ratio, was found to be in good agreement 
with Benford’s law in the vicinity of 10 ranks. It has also been argued that all 
these distributions, including the central limit theorem, can be derived from 
Planck’s law and are the result of the quantization of energy. This argumentation 
may be considered a physical origin of probability.  
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