Food and Nutrition Sciences

Volume 3, Issue 1 (January 2012)

ISSN Print: 2157-944X   ISSN Online: 2157-9458

Google-based Impact Factor: 0.92  Citations  h5-index & Ranking

Some Factors Affecting the Production of Carotenoids by Rhodotorula glutinis var. glutinis

HTML  Download Download as PDF (Size: 264KB)  PP. 64-71  
DOI: 10.4236/fns.2012.31011    7,212 Downloads   13,253 Views  Citations

Affiliation(s)

.

ABSTRACT

A new yeast strain isolated from pin cushion flower (Scabiosa atropurpura) in our laboratory was selected from 200 yeast isolates as carotenoids producer and identified as Rhodotorula glutinis var. glutinis. The selected isolate was grown in synthetic medium to study the effect of carbon to nitrogen ratio, sources of nitrogen and carbon, mineral salts and incubation temperature on carotenoids production. The results indicated the following optimal conditions: carbon to nitrogen ratio of 5, ammonium sulphate as nitrogen source, sucrose as carbon source, presence of zinc sulphate in the medium and cultivation temperature of 25?C. The studied factors affected the dry biomass as well as the proportion of carotenoids and consequently the colour of pellets of the yeast. The yeast strain was grown under the optimal conditions to study the changes occurring in the medium and the pellets during carotenoids production for 6 days. Carotenoids production started after the first day of incubation and most of the carotenoids content in the yeast cells was produced during stationary phase. The highest cellular (861 μg?g–1) and volumetric (1.9 mg?L–1) carotenoids content were ob- tained after 5 days of growth.

Share and Cite:

A. El-Banna, A. El-Razek and A. El-Mahdy, "Some Factors Affecting the Production of Carotenoids by Rhodotorula glutinis var. glutinis," Food and Nutrition Sciences, Vol. 3 No. 1, 2012, pp. 64-71. doi: 10.4236/fns.2012.31011.

Cited by

[1] Optimization of β-Carotene production from Agro-industrial by-products by Serratia marcescens ATCC 4054 using Plackett-Burman Design and Central Composite Design
[2] Antioxidant Potential and Capacity of Microorganism-Sourced C30 Carotenoids—A Review
Antioxidants, 2022
[3] Rhodotorula sp.–based biorefinery: a source of valuable biomolecules
Ebinuma… - Applied Microbiology …, 2022
[4] Enhanced Production of C30 Carotenoid 4, 4'-Diaponeurosporene by Optimizing Culture Conditions of Lactiplantibacillus plantarum subsp. plantarum …
2022
[5] بهینه‌سازی تولید رنگدانه کانتاگزانتین توسط سویه مقاوم به اشعه دیتزیا ماریس و ارزیابی اثرات آن بر کشت سلولی‎
زیست‌فناوری …, 2022
[6] Enhancement of biomass and total carotenoid content of a UV-resistant strain of Dietzia maris in response to different carbon and nitrogen sources
BioTechnologia …, 2021
[7] Production of Biosurfactants Aspergillus niger and Rhodotorula sp Isolated from Sugar Cane Bagasse Dumpsite: A Comparative Study: doi. org/10.26538/tjnpr/v5i5 …
Tropical Journal of …, 2021
[8] Production optimization and evaluation of antioxidant and cytotoxic properties of cellulosimicrobium AZ carotenoid pigment
Biological Journal of …, 2021
[9] Valorisation of molasses by oleaginous yeasts for single cell oil (SCO) and carotenoids production
2021
[10] Carotenoid Production by Red Yeast Isolates Grown in Agricultural and" Mandi" Waste
2021
[11] Каротиноидсинтезирующие дрожжевые грибы и их применение в биотехнологии (обзор литературы)
2021
[12] Biotechnological production of carotenoids using low cost-substrates is influenced by cultivation parameters: A review
International Journal of …, 2021
[13] Isolation and identification of carotenoid-producing Rhodotorula sp. from Pinaceae forest ecosystems and optimization of in vitro carotenoid production
Biotechnology Reports, 2021
[14] Effect of Selected Cations and B Vitamins on the Biosynthesis of Carotenoids by Rhodotorula mucilaginosa Yeast in the Media with Agro-Industrial Wastes
Applied Sciences, 2021
[15] Use of response surface methodology to enhance carotenoid pigment production from Cellulosimicrobium strain AZ
2020
[16] Up-to-date knowledge on yeasts for food industry.
2020
[17] Carotenoid Production by Rhodosporidium paludigenum Using Orange Peel Extract as Substrate
2020
[18] Manipulation of Culture Conditions: Tool for Correlating/Improving Lipid and Carotenoid Production by Rhodotorula glutinis
2020
[19] Effect of light on carotenoid and lipid production in the oleaginous yeast Rhodosporidium toruloides
2020
[20] Reutilization of residual glycerin for the produce β-carotene by Rhodotorula minuta
2020
[21] Agroindustrial Byproducts for the Generation of Biobased Products: Alternatives for Sustainable Biorefineries
2020
[22] Using of Some Agro-industrial Wastes for Improving Carotenoids Production from Yeast Rhodotorula glutinis 32 and Bacteria Erwinia uredovora DSMZ 30080
2020
[23] Biotechnological Potential of Carotenoids Produced by Extremophilic Microorganisms and Application Prospects for the Cosmetics Industry
2020
[24] Yeast carotenoids: production and activity as antimicrobial biomolecule
2020
[25] Use of response surface methodology to enhance carotenoid pigment production from cellulosimicrobium strain AZ SN
Applied Science, 2020
[26] PERSPECTIVA BIOTEHNOLOGICĂ PRIVIND APLICAREA NANO-OXIZILOR METALICI LA CULTIVAREA LEVURILOR DE INTERES BIOTEHNOLOGIC
2019
[27] Study of Metabolic Adaptation of Red Yeasts to Waste Animal Fat Substrate
2019
[28] Simultaneous Production of Lipids and Carotenoids by the Red Yeast Rhodotorula from Waste Glycerol Fraction and Potato Wastewater
2019
[29] Lipid and Carotenoid Production by Rhodotorula glutinis with a Combined Cultivation Mode of Nitrogen, Sulfur, and Aluminium Stress
2019
[30] Біотехнологічні засади збереження та відтворення рибних ресурсів водойм карпатського регіону
2019
[31] Agro-industrial Orange Waste as a Low Cost Substrate for Carotenoids Production by Rhodotorula mucilagenosa
Assiut J. Agric. Sci., 2019
[32] Подається на здобуття наукового ступеня доктора біологічних наук. Дисертація містить результати власних досліджень. Використання ідей …
2019
[33] Evaluation of Effects of Mg2+ and Cu2+ on Pigment-Metabolite Production and Photosystem II Activity of Arthrospira platensis Gomont 1892
2019
[34] Implicarea levurilor din genul Rhodotorula în biotehnologii (Reviul literarurii)
2019
[35] Carotenoid production by Sporidiobolus pararoseus in agroindustrial medium: optimization of culture conditions in shake flasks and scale-up in a stirred tank …
2018
[36] Utilização de resíduos agroindustriais para a obtenção de moléculas bioativas a partir de microrganismos
2018
[37] Torulene and torularhodin:“new” fungal carotenoids for industry?
2018
[38] The effect of Zn (II) ions and reactive oxygen on the uptake of zinc and production of carotenoids by selected red yeasts
Chemistry & biodiversity, 2018
[39] Bioprospecção de leveduras para produção de carotenoides microbianos
Repositório Institucional UNESP, 2018
[40] تحديد الظروف المثلى لانتاج الكاروتينويدات من خميرة Rodotorula mucilagenosa M. المعزولة محلياً والمطفرة كيميائياً.‎
2018
[41] Solid coffee waste as alternative to produce carotenoids with antioxidant and antimicrobial activities
Waste Management, 2018
[42] Characterization of Carotenogenic Rhodotorula Strains Isolated from Delta Region, Egypt and their Potential for Carotenoids Production
2018
[43] CAROTENOID PRODUCTION BY Sporidiobolus pararoseus IN AGROINDUSTRIAL MEDIUM: OPTIMIZATION OF CULTURE CONDITIONS IN SHAKE …
2018
[44] Evaluation of Effects of Mg 2 and Cu 2 on Pigment-Metabolite Production and Photosystem II Activity of Arthrospira platensisGomont 1892
Turk. J. Fish.& Aquat. Sci., 2018
[45] The role of Rhodotorula mucilaginosa in selected biological process of wild fish
2018
[46] THE EFFECT OF ZnO NANOPARTICLES ON THE ACTIVITY OF ANTIOXIDANT ENZYMES AND CAROTENOID CONTENT AT RHODOSPORIDIUM TORULOIDES …
2018
[47] THE ACTION OF TiO2, ZnO, Fe3O4 NANOPARTICLES ON SACCHAROMYCES AND RHODOTORULA YEAST STRAINS IN FUNCTION OF THE …
Analele Stiintifice ale Universitatii Alexandru Ioan Cuza din Iasi. Sectiunea II A, Genetica si Biologie Moleculara, 2017
[48] Fouling release of UV-cured acrylic coatings: Set-up of an in vitro test with Rhodotorula mucilaginosa
Surface and Coatings Technology, 2017
[49] Evaluation of brewers' spent grain as a novel media for yeast growth
AMB Express, 2017
[50] Correlation between lipid and carotenoid synthesis in torularhodin-producing Rhodotorula glutinis
Annals of Microbiology, 2017
[51] Kinetic study of growth, lipid and carotenoid formation in β-carotene producing Rhodotorula glutinis
Chemical Papers, 2017
[52] Carotenoid Production by a Novel Isolate of Microbacterium paraoxydans
Indian Journal of Microbiology, 2017
[53] Optimization of β-Carotene Production from Rhodotorula glutinis ATCC 4054 Growing on Agro-industrial Substrate Using Plackett–Burman Design
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 2017
[54] Reversible naftifine-induced carotenoid depigmentation in Rhodotorula mucilaginosa (A. Jörg.) FC Harrison causing onychomycosis
Scientific Reports, 2017
[55] Produção e caracterização de pigmentos produzidos por Chryseobacterium KR6 e Lysobacter A03
2017
[56] BIOSYNTEZA BETA-KAROTENU I KAROTENOIDÓW Z UDZIAŁEM DROŻDŻY RHODOTORULA SPP.-PRZEGLĄD BADAŃ.
2017
[57] The Effect of Carotenoid Produced by Rhodotorula mucilaginosa UIMC35 on Aspergillus fumigatus, Aspergillus flavus, and Mucor hiemalis
Qom Univ Med Sci J, 2017
[58] Próba zastosowania glicerolu i ziemniaczanej wody sokowej do produkcji karotenoidów przez drożdże Rhodotorula gracilis
2017
[59] Carotenoid production by Rhodotorula mucilaginosa UIMC35 and investigation of its antifungal effect on Aspergillus fumigatus, Aspergillus flavus and Mucor hiemalis
2017
[60] Carotenoid pigment production from yeast: Health benefits and their industrial applications
2017
[61] Динаміка накопичення біомаси і каротинсинтезуюча активність Rhodotorula glutinis (Fresenius) FC Harrison (1982) за дії ультрафіолету
2017
[62] Biosynteza beta-karotenu i karotenoidów z udziałem drożdży Rhodotorula spp.–przegląd badań
2017
[63] The action of TiO2, ZnO, Fe3O4 nanoparticles on Saccharomyces and Rhodotorula yeast strains in function of the concentration and dimensions
2017
[64] Optimization of b-Carotene Production from Rhodotorula glutinis ATCC 4054 Growing on Agro-industrial Substrate Using Plackett–Burman Design
Proceedings of the National Academy of Sciences, India - Section B: Biological Sciences, 2017
[65] تأثیر کاروتنوئید تولید‌شده، به‌وسیله رودوتورولا موسیلاژینوزا UIMC35بر آسپرژیلوس فومیگاتوس، آسپرژیلوس فلاووس و موکور هیمالیس‎
مجله دانشگاه علوم پزشکی قم, 2017
[66] Effect of Zn2+, Cu2+ and Fe2+ ions for accumulation of ergosterol, β–carotene and coenzyme Q10 by Antarctic yeast strain Sporobolomyces salmonicolor AL1
2016
[67] Efectul nanoparaticulelor TiO2 asupra conţinutului de polizaharide şi pigmenţi carotenoidici la levuri
2016
[68] EFFECT OF [Zn. sup. 2+],[Cu. sup. 2+] AND [Fe. sup. 2+] IONS FOR ACCUMULATION OF ERGOSTEROL,[beta]-CAROTENE AND COENZYME [Q. sub. 10] BY …
2016
[69] Caractere fenotipice si compoziţia biochimica a tulpinii de levuri pigmentate Rhodotorula gracilis CNMN-Y-30
2016
[70] Using strain Rhodotorula mucilaginosa to produce carotenoids using food wastes
Journal of the Taiwan Institute of Chemical Engineers, 2016
[71] Optimization of β-carotene production from agro-industrial by-products by Serratia marcescens ATCC 27117 using Plackett–Burman design and central composite design
Annals of Agricultural Sciences, 2016
[72] Rhodotorula glutinis—potential source of lipids, carotenoids, and enzymes for use in industries
Applied microbiology and biotechnology, 2016
[73] 1-s2. 0-S0570178316000178-main
2016
[74] EFFECT OF Zn2+, Cu2+ AND Fe2+ IONS FOR ACCUMULATION OF ERGOSTEROL, β–CAROTENE AND COENZYME Q10 BY ANTARCTIC YEAST STRAIN …
2016
[75] Optimization of β-carotene production from agro-industrial by-products by Serratia marcescens ATCC 27117 using Plackett–Burman design and central …
Annals of Agricultural Sciences, 2016
[76] Production of β-Carotene by a Newly Isolated Rhodotorula Glutinis UCP1555 Strain and Cytotoxic Effect Evaluation
2016
[77] EFFECT OF Zn2+, Cu2+ AND Fe2+ IONS FOR ACCUMULATION OF ERGOSTEROL, β–CAROTENE AND COENZYME Q10 BY ANTARCTIC YEAST STRAIN …
2016
[78] ВПЛИВ ДЖЕРЕЛ КАРБОНУ, НІТРОГЕНУ ТА СОЛЕЙ МЕТАЛІВ НА ПРОДУКТИВНІСТЬ КАРОТИНСИНТЕЗУВАЛЬНИХ ШТАМІВ BACILLUS SUBTILIS 1.1 ТА B …
2015
[79] Media Optimization, Extraction and Partial Characterization of an Orange Pigment from Salinicoccus sp. MKJ 997975
2015
[80] Optimization of Carotenoids production by yeast strains of Rhodotorula using salted cheese whey
Int. J. Curr. Microbiol. App. Sci, 2015
[81] Ріст і утворення каротинів штамами Bacillus amyloliquefaciens УКМ В-5113 та B. subtilis 1.1 в умовах глибинного культивування
Мікробіологія і біотехнологія, 2015
[82] Food Colorant from Microorganisms
Beneficial Microorganisms in Food and Nutraceuticals, 2015
[83] Antimicrobial and antioxidant properties of pigments synthesized from microorganisms
2015
[84] Evrimsel Mühendislik Yöntemiyle Karotenoid Üreten Mayanın Kobalt Stresine Adaptasyonu
2014
[85] Застосування кератинсинтезуючих дріжджів Rhodotorula glutinis для культивування Simocephalus vetulus (Müller, 1776) лабораторних умовах
Науковий в?сник Черн?вецького ун?верситету. Б?олог?я (Б?олог?чн? системи), 2014
[86] ЗАСТОСУВАННЯ КАРОТИНСИНТЕЗУЮЧИХ ДРІЖДЖІВ RHODOTORULA GLUTINIS ДЛЯ КУЛЬТИВУВАННЯ SIMOCEPHALUS VETULUS (MÜLLER, 1776) У …
2014
[87] 培養基配方對酵母菌 Rhodotorula mucilaginosa 生產類胡蘿蔔素種類和比例之影響
2013
[88] Assessment of β-carotene content, cell physiology and morphology of the yellow yeast Rhodotorula glutinis mutant 400A15 using flow cytometry
Journal of industrial …, 2013
[89] Pigment production by Exiguobacterium aurantiacum FH, a novel Lebanese strain
2013
[90] Produção de biopigmentos pela levedura Pichia kudriavzevii cultivada em subprodutos agroindustriais
[91] Produção de biopigmentos utilizando-se hidrolisados de bagaço de cana-de-açúcar–um estudo com a levedura Pichia kudriavzevii
[92] Using of Some Agro-industrial Wastes for Improving Carotenoids Production from Yeast Rhodotorula glutinis 32 and Bacteria Erwinia uredovora DSMZ
GF Galal

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.