Publications (selected)
1. Poirier, Michel & Giguère, Daniel &
Sapoundjiev, Hristo. (2018). Experimental parametric investigation of vapor
ejector for refrigeration applications. Energy. 162. 1287-1300.
10.1016/j.energy.2018.08.034.
2. Ashrafi, Omid & Bashiri, Hamed & Esmaeili, Amin &
Sapoundjiev, Hristo & Navarri, Philippe. (2018). Ejector integration for
the cost effective design of the Selexol TM process. Energy. 162.
10.1016/j.energy.2018.08.053.
3. Bashiri, Hamed & Ashrafi, Omid & Esmaeili, Amin &
Sapoundjiev, Hristo & Navarri, Philippe. (2018). A NOVEL COST MANAGEMENT
STRATEGY FOR SELEXOL SYNGAS PURIFICATION PROCESS.
4. Bashiri, Hamed & Ashrafi, Omid & Esmaeili, Amin &
Sapoundjiev, Hristo & Navarri, Philippe. (2018). A NOVEL COST MANAGEMENT
STRATEGY FOR SELEXOL SYNGAS PURIFICATION PROCESS.
5. Reddick, Christopher & Sorin, Mikhail &
Sapoundjiev, Hristo & Aidoun, Zine. (2017). Effect of a mixture of carbon
dioxide and steam on ejector performance: An experimental parametric
investigation. Experimental Thermal and Fluid Science. 92.
10.1016/j.expthermflusci.2017.12.008.
6. Reddick, Christopher & Sorin, Mikhail &
Sapoundjiev, Hristo & Aidoun, Zine. (2016). Carbon capture simulation using
ejectors for waste heat upgrading. Energy. 100. 251-261.
10.1016/j.energy.2016.01.099.
7. Reddick, Christopher & Li, Cheng & Sorin, Mikhail
& Sapoundjiev, Hristo. (2014). Lowering the Energy Cost of Carbon Dioxide
Capture using Ejectors for Waste Heat Upgrading. Energy Procedia. 63. 715-726.
10.1016/j.egypro.2014.11.079.
8. Sapoundjiev, Hristo. (2014). Unsteady state
processes in catalysis: efficient way for energy savings, air pollution
prevention and GHG mitigation. Austin journal of chemical engineering vil.1
2014. vol.1.
9. Bunimovich, Grigorii & Sapoundjiev, Hristo.
(2013). Periodic Flow Reversal. 10.1016/B978-0-12-391854-3.00018-8.
10. Hashimoto, Kenji & Kawase, Motoaki &
Petkovska, Menka & Hanika, J. & Li, Cheng-Yue & Adesina, Adesoji
& Sapoundjiev, Hristo & Scharer, Jeno & Silveston, Peter. (2013).
New Directions—Research and Development Challenges.
10.1016/B978-0-12-391854-3.00023-1.
11. Fuxman, A. & Aksikas, Ilyasse & Forbes,
J.F. & Hayes, R. & Sapoundjiev, Hristo. (2010). LQ-Control of a Flow
Reversal Reactor for the Catalytic Combustion of Fugitive Methane Emissions.
18th Mediterranean Conference on Control and Automation, MED'10 - Conference
Proceedings. 10.1109/MED.2010.5547753.
12. Litto, Rajab & Hayes, R. & Sapoundjiev,
Hristo & Fuxman, A. & Forbes, F. & Liu, B. & Bertrand, F..
(2006). Optimization of Flow Reversal Reactor for the Catalytic Combustion of
Lean Methane Mixtures. Catalysis Today. 117. 536-542.
10.1016/j.cattod.2006.06.013.
13. Kushwaha, A. & Poirier, Michel & Hayes,
R. & Sapoundjiev, Hristo. (2005). Heat Extraction From a Flow Reversal
Reactor in Lean Methane Combustion. Chemical Engineering Research & Design
- CHEM ENG RES DES. 83. 205-213. 10.1205/cherd.04177.
14. Kushwaha, A. & Poirier, Michel & Hayes,
R. & Sapoundjiev, Hristo. (2005). Heat Extraction From a Flow Reversal
Reactor in Lean Methane Combustion. Chemical Engineering Research & Design
- CHEM ENG RES DES. 83. 205-213. 10.1205/cherd.04177.
15. Sapoundjiev, Hristo & Hayes, R.. (2004).
Unsteady-state processes in catalysis: a Special Issue of Chemical Engineering
Science. Chemical Engineering Science - CHEM ENG SCI. 59. 3981-3982.
10.1016/j.ces.2004.07.046.
16. Salomons, Stephen & Hayes, R. &
Poirier, Michel & Sapoundjiev, Hristo. (2004). Modeling a Reverse Flow
Reactor for the Catalytic Combustion of Fugitive Methane Emissions. Computers
& Chemical Engineering. 28. 1599-1610. 10.1016/j.compchemeng.2003.12.006.
17. Salomons, Stephen & Hayes, R. &
Poirier, Michel & Sapoundjiev, Hristo. (2003). Flow Reversal Reactor for
Catalytic Combustion of Lean Methane Mixtures. Catalysis Today. 83. 59-69.
10.1016/S0920-5861(03)00216-5.
18. Aubé, F. & Sapoundjiev, Hristo. (2000).
Mathematical Model and Numerical Simulations of Catalytic Flow Reversal
Reactors for Industrial Applications. Computers & Chemical Engineering. 24.
2623-2632. 10.1016/S0098-1354(00)00618-9.
19. Sapoundjiev, Hristo & Sejnoha, M.. (2000).
Greenhouse Gas Elimination and Heat Recovery from Dilute Methane Emissions by
Using a Catalytic Flow Reversal Reactor Technology. 10.1007/978-94-015-9343-4_55.
20. Sapoundjiev, Hristo & Trottier, Richard
& Aubé, F.. (1999). Heat recovery from lean industrial methane emissions.
Environmental and economic benefits of CFRR technology. Greenhouse Gas Control
Technologies. 805-810. 10.1016/B978-008043018-8/50128-4.
Profile Details
https://www.researchgate.net/profile/Hristo-Sapoundjiev