Optimal Multiperiodic Control for Inventory Coupled Systems: A Multifrequency Second-Order Test ()
1. Introduction
We consider complex autonomous inventory coupled (IC) systems. Such systems can take, for example, the form of a network of chemical or biochemical networks, where the inventory interactions perform the recycling of by-products or by-streams from some subsystems to other subsystems as their input components or energy carriers [1] . Because of the flexible interactions of the subsystems, each of them can be operated with their own period utilizing advantageously its dynamic properties. In this context, we formulate the multiperiodic optimal control problem, which generalizes the periodic control approach finding much attention for the optimization of chemical and biotechnological processes [2] - [6] . We analyze three kinds of operation for IC systems: the steady state one, the periodic one, and the multiperiodic one with possibly incommensurate operation frequencies of the subsystems. We develop a multifrequency second- order test, which can be used to ensure the best intensification of the productivity of IC systems preserving at the same time their advantageous ecological features: many by- products are recycled within a complex system. The justification of the test proposed is obtained by the approach avoiding the regularity conditions, which generalizes such an approach for single systems. We illustrate the theoretical considerations by the example of multiperiodic optimization of a complex chemical production system.
Notation:
is the set of positive reals;
is the space of n-dimensional real (complex) vectors x with the norm
;
;
is the space of t-periodic n-dimensional essentially bounded functions x equipped with the norm
;
is the space of t-periodic n-dimensional functions with the essentially bounded derivative and the norm
is the zero (the identity) matrix of the dimension
(
);
is the interior of the set X;
is the dimension of a variable x;
for
;
is the set of t-periodic n-dimensional trigonometric polynomials of degree
; and
is the average value of a t-periodic function
.
2. Optimal Multiperiodic Control Problem
Consider the following optimal multiperiodic control problem for IC systems (the problem M) composed of the set
of N subsystems: find for each subsystem its operation period
, and its
-periodic control process
encompassing its
-periodic state trajectory
, its
-periodic extended control
, which minimize the performance index
(1)
being a scalar function of the
-averaged outputs of the subsystems
(2)
and subject to the resource-technological constraints of the subsystems
(3)
the state equations of the subsystems
(4)
the inventory constraints
(5)
and the box constraints for the process variables
(6)
where the extended control
of the ith subsystem encompasses its local control
, and its inventory control
, and
, and
are the box sets, and
![]()
![]()
![]()
while
is the multiperiodic control process of the IC system. We denote the set of all such processes satisfying the constraints (2)-(6) with a fixed multiperiod
by
, and the corresponding problem
by
.
The objective function (1) represents the global benefits from the multiperiodic operation of the IC system, which are determined with the help of the
-averaged outputs (2) of the subsystems depicting, for example, their averaged production performance or their averaged selectivity. The constraints (3) mirror the averaged availability of the resources used for the process operation, and the technological requirements for the averaged product purity. The inventory interactions (5) perform the recycling of by-products or by-streams of some subsystems to other subsystems as their input components or energy carriers [1] . Because of the flexible interactions of the subsystems each of them can be operated with their own period utilizing advantageously its dynamic properties, which leads to the nested multiperiodic optimization encompassing the static and periodic optimization as its particular cases. The structural matrices
and
determine the averaged constraint of the inventory control of the ith subsystem by the averaged outputs of the other subsystems.
3. The Multifrequency Second-Order Test for Complex Systems
Constraining the variables
to the steady functions
we obtain the optimal steady-state problem for the IC systems (the problem S):
(7)
where
is the steady-state control process of the IC system with the components
. Let
be a locally optimal steady-state process of the IC system (the
-process) with the components
(the
-processes).
Assumption 1: The functions
and
are twice continuously differentiable in some neighbourhoods of the points
and
, respectively
.
Assumption 2: The steady states
are lying in the interior of their box sets, i.e.
.
Let
be the solution of the differential equation
![]()
for the reduced
-periodic control process of the ith subsystem
,
Using the affine scaling of the variables
we convert the sets
into the hypercubes
. We write their box constraints as
, where the functions
take the form take the form
and
.
We convert the problem
to the following reduced form (the problem
):
![]()
where
is the reduced multiperiodic control process normed as
. The set of all admissible processes of the problem
is denoted by
.
The
-process induces a reduced locally optimal steady-state process
of the problem
(the
-process) with the components
The problem
is locally proper at
iff
is not its local minimum.
We approximate the controls
by the trigonometric polynomials
(the T-controls) defined as
![]()
with the coefficients
and the operation frequency
. We denote by
the set of the coefficients of the T-controls
with
. We distinguish the subvectors
of the vector
connected with its internal part
, and its boundary parts
and
, where
. We fix the control
on its optimal steady-state level
, while we shift the controls
to the interior of their box sets. We impose on the subvectors
the pure dynamic T-controls
We set
. We write the generalized function of the box constraints as
, where the functions
take the form
for
and
for
.
We write the multi-trigonometric approximation
of the problem
:
![]()
where the mappings
determining the con- straints on the T-controls are defined as
![]()
with
![]()
![]()
![]()
![]()
and
and
is the reduced multi-trigono- metric control process of the IC system with the components
. The set of all admissible control processes of the problem
is denoted by
.
Assumption 3: The number of points
of the discrete time grid
is coordinated with the degree
of the trigonometric polynomials
such that
.
Lemma 1. The
-process and the problems
,
and
have the following nesting
, which means that the set of the reduced admissible multi- trigonometric control processes
contains the
-process, and is contained in the set of the reduced admissible multiperiodic control processes
, which can be extended to the set of admissible multiperiodic control processes
.
Proof. The
-process satisfies the constraints
by their definition. It also verifies the constraints
, since its dynamic parts are nullified
and
Thus
. The constraints
mean that
, which implies, by the uniform norm evaluation of the T-control [7] [8] , the inequalities
and
. The constraints
mean that
, and imply by the same evaluation
On the other hand the constraint
involves
. Hence
and
. Similarly the constraints
and
imply
. Thus
. The latter set can be extended to the set
. W
Let
be the L(agrange)-function for the problem S with
![]()
where
is the multiplier connected with the performance index of the problem S, and
and
are the multipliers assigned to the constraints
and
, and
is the multiplier of the problem S with
, and
is the active part of the constraint
at
,
is the active part of the constraint
at
, and
is the active part of the constraint
at
. We set
.
Lemma 2. If
is a local minimum of the problem
, then there exists a nonzero multiplier
such that the following conditions are satisfied
![]()
(8)
Let
be the multipliers for the active constraints
, let
![]()
and let
be the multiplier of the problem
. We set
,
,
, and we write the L-function of the problem
:
![]()
We abbreviate the (partial) derivatives evaluated at
as
![]()
![]()
![]()
![]()
Assumption 4: The matrices
are nonsingular for all
such that
.
This assumption eliminates the onset of free, and resonance oscillations in the subsystems.
Lemma 3. The s-process satisfies the FON conditions of the problem
regardless if it is its local minimum or not. These conditions take for a nonzero multiplier
the form
![]()
(9)
Proof. The problem
can be interpreted as the finite dimensional optimization problem with respect to the argument
. The conditions (9) are a consequence of the nullifying of the derivatives
and
. They are satisfied for
and
following from the conditions (8). W
Thus the FON conditions of the problem
cannot be used to discern improving multiperiodic controls. The second order necessary (SON) conditions exploiting the set
of critical directions can be useful to this end. Because of the averaging operation it may be defined in terms of the variations of the constant components
of the periodic state trajectories of the subsystems and the variations of their T-controls ![]()
![]()
where ![]()
Let
be the set of the normalized multipliers satisfying the FON conditions (9) of the problem
, let
be the set of admissible multiperiods of the IC system, and let
are the subvectors of the complex
vector
connected with the internal (
) and boundary
parts (
) of the vector
, respectively. Let us denote the spectral transfer function for the ith subsystem by
, and by
![]()
its
-matrix.
The contradiction of the SON conditions for the problem
yields
Theorem 1. The problem
is locally proper at the s-process if for a certain admissible multiperiod
and a critical direction
the inequality
(10)
holds, where
is the second variation of
at
taking the form
![]()
or in the structural version
![]()
and
are the submatrices of the matrix
of the dimension
with the upper left hand corner at
.
Proof. Lemma 2 shows that the finite-dimensional optimal steady-state process satisfies the FON conditions with a nonzero Lagrange multiplier without regularity conditions. Lemma 3 shows that this process satisfies also the FON conditions of the optimal multiperiodic control problem regardless if it is local minimum or not. This means that such conditions do not allow to distinguish improving multiperiodic control processes. For this reason the attention is directed to the SON conditions, which take for multiharmonic control variations especially simple form connected with the generalized
-test for single systems [11] . If the condition (10) is satisfied then the optimal steady-state process cannot be optimal for the multiperiodic control problem as violating its SON conditions. In a consequence an improving multiperiodic control process exists for the multiperiod exploited in (10). W
The discussed second order test has the following distinctive features: it concerns the different (possibly incommensurate) basic operation frequencies
of the particular subsystems utilizing advantageously their dynamic properties; structural notation of the pi-form distinguishes the improving influence of the variations of the internal as well as the upper and lower boundary extended controls; even for boundary steady-state extended controls an arbitrary large number of harmonics
is applicable in the second order variation, which may be useful for highly nonlinear complex systems; the maximization in the condition (10) is equivalent to the linear programming problem solvable in finite number of iterations by the simplex algorithm avoiding the verification of the regularity conditions for the
-process in the problem
. On the other hand if the mentioned regularity condition can be verified by the MFCQ or the LICQ regularity condition then a normal multiplier
is applicable in the second order test.
4. Example
Let two continuously stirred tank reactors be coupled by the inventory interactions. In each of them the parallel chemical reactions
take place, where
is the substrate of the ith reactor,
is its desired product, and
is its by-product
. The ith reactor is
-periodically operated,
are its concentrations of
, respectively, and
is its state,
is its input concentration control,
is its input intensity control, and
is its inventory interaction transferring the by-product of the cooperating subsystem as the catalyst of its reactions, and
is its extended control. Consider the following optimal control problem for the discussed system: minimize the objective function
![]()
being a scalar function of the averaged outputs
![]()
with
![]()
and subject for
to the local constraints
![]()
![]()
![]()
![]()
![]()
and to the interaction constraints
![]()
Thus
. The objective function is equivalent to the maximization of the summary gain from the useful products of both reactors. The cost of the interactions is included. We assume the parameters
,
,
,
,
,
,
,
,
,
. The optimal steady-state solution is obtained for the boundary input concentration controls and the internal other controls
,
,
,
,
,
,
,
,
,
,
,
.
The variation of the optimal steady state solution
,
,
moves the boundary input concentration controls to the interiority of their box sets, and satisfies all the constraints of the set of critical directions:
![]()
![]()
The positive component of the second order test generated by the steady state variation
does not disturb the multiperiodic control problem to be proper.
The multifrequency second order test for the discussed complex system with the inventory interactions is shown on Figure 1 and Figure 2 for different number of harmonics.
The second order test obtained shows the diversified advantageous operation frequencies for particular subsystems
and
for the single harmonic and
and
for the five harmonics. Thus the multiharmonic test may yield more exact information concerning the proper operation periods for particular subsystems.
![]()
Figure 1. The single harmonic second order test for the complex system with the inventory interactions.
![]()
Figure 2. The five harmonics second order test for the complex system with the inventory interactions.
5. Conclusion
In this note, we formulated the optimal multiperiodic control problem for inventory constrained subsystems. It is aimed at the intensification of the productivity of complex processes. We proposed a multifrequency second-order test for complex multiperiodic systems including the boundary optimal steady-state process and an arbitrary large number of harmonics used to verify its improvement by the multiperiodic operation. We generalized the method of critical directions for single periodic systems [10] [11] to complex multiperiodic systems. We illustrated the approach proposed on the example of the multiperiodic optimization of a system of chemical reactors.
Acknowledgements
This work has been supported by the National Science Center under grant: 2012/07/B/ ST7/01216.