A “Hard to Die” Series Expansion and Lucas Polynomials of the Second Kind

Abstract

We show how to use the Lucas polynomials of the second kind in the solution of a homogeneous linear differential system with constant coefficients, avoiding the Jordan canonical form for the relevant matrix.

Share and Cite:

Natalini, P. and Ricci, P. (2015) A “Hard to Die” Series Expansion and Lucas Polynomials of the Second Kind. Applied Mathematics, 6, 1235-1240. doi: 10.4236/am.2015.68116.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Gantmacher, F.R. (1960) Matrix Theory. Chelsea Pub. Co., New York.
[2] Hirsch, M.W., Smale, S. and Devaney, R.L. (2003) Differential Equations, Dynamical Systems & an Introduction to Chaos. Academic Press, Elsevier, London.
[3] Raghavacharyulu, I.V.V. and Tekumalla, A.R. (1972) Solution of the Difference Equations of Generalized Lucas Polynomials. Journal of Mathematical Physics, 13, 321-324.
http://dx.doi.org/10.1063/1.1665978
[4] Bruschi, M. and Ricci, P.E. (1982) An Explicit Formula for f(A) and the Generating Function of the Generalized Lucas Polynomials. SIAM Journal on Mathematical Analysis, 13, 162-165.
http://dx.doi.org/10.1137/0513012
[5] Bruschi, M. and Ricci, P.E. (1980) I polinomi di Lucas e di Tchebycheff in più variabili. Rendiconti di Matematica e delle sue Applicazioni, 13, 507-530.
[6] Ricci, P.E. (1976) Sulle potenze di una matrice. Rendiconti di Matematica e delle sue Applicazioni, 9, 179-194.
[7] Lucas, é. (1891) Théorie des Nombres. Gauthier-Villars, Paris.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.