A “Hard to Die” Series Expansion and Lucas Polynomials of the Second Kind ()
Abstract
We show how to use the Lucas polynomials of the second kind in the solution of a homogeneous linear differential system with constant coefficients, avoiding the Jordan canonical form for the relevant matrix.
Share and Cite:
Natalini, P. and Ricci, P. (2015) A “Hard to Die” Series Expansion and Lucas Polynomials of the Second Kind.
Applied Mathematics,
6, 1235-1240. doi:
10.4236/am.2015.68116.
Conflicts of Interest
The authors declare no conflicts of interest.
References
[1]
|
Gantmacher, F.R. (1960) Matrix Theory. Chelsea Pub. Co., New York.
|
[2]
|
Hirsch, M.W., Smale, S. and Devaney, R.L. (2003) Differential Equations, Dynamical Systems & an Introduction to Chaos. Academic Press, Elsevier, London.
|
[3]
|
Raghavacharyulu, I.V.V. and Tekumalla, A.R. (1972) Solution of the Difference Equations of Generalized Lucas Polynomials. Journal of Mathematical Physics, 13, 321-324. http://dx.doi.org/10.1063/1.1665978
|
[4]
|
Bruschi, M. and Ricci, P.E. (1982) An Explicit Formula for f(A) and the Generating Function of the Generalized Lucas Polynomials. SIAM Journal on Mathematical Analysis, 13, 162-165. http://dx.doi.org/10.1137/0513012
|
[5]
|
Bruschi, M. and Ricci, P.E. (1980) I polinomi di Lucas e di Tchebycheff in più variabili. Rendiconti di Matematica e delle sue Applicazioni, 13, 507-530.
|
[6]
|
Ricci, P.E. (1976) Sulle potenze di una matrice. Rendiconti di Matematica e delle sue Applicazioni, 9, 179-194.
|
[7]
|
Lucas, é. (1891) Théorie des Nombres. Gauthier-Villars, Paris.
|