Share This Article:

Horizontal gene transfer of plant-specific leucine-rich repeats between plants and bacteria

Full-Text HTML Download Download as PDF (Size:5319KB) PP. 580-598
DOI: 10.4236/ns.2013.55074    4,156 Downloads   6,657 Views   Citations


Leucine rich repeats (LRRs) are present in over 14,000 proteins that have been identified in viruses, bacteria, archaea, and eukaryotes. Two to sixty-two LRRs occur in tandem forming an overall arc shaped domain. There are eight classes of LRRs. Plant specific LRRs (class: PS-LRR) had previously been recognized in only plant proteins. However, we find that PS-LRRs are also present in proteins from bacteria. We investigated the origin of bacterial PS-LRR domains. PSLRR proteins are widely distributed in most plants; they are found in only a few bacterial species. There are no PS-LRR proteins from archaea. Bacterial PS-LRRs in twenty proteins from eleven bacterial species (in the three phyla: Proteobacteria, Cyanobacteria, and Bacteroidetes) are significantly more similar to the PS-LRR class than to the other seven classes of LRR proteins. Not only amino acid sequences but also nucleotide sequences of the bacterial PS-LRR domains show highly significant similarity with those of many plant proteins. The program, EGID (Ensemble algorithm for Genomic Island Detection), predicts that Synechococcus sp. CYA_ 1022 came from another organism. Four bacterial PS-LRR proteins contain AhpC-TSA, IgA peptidase M64, the immunoglobulin domain, the Calx-b domain, and the He_PIG domain; these domains show no similarity with any eukaryotic (plant) proteins, in contrast to the similarities of their respective PS-LRRs. The present results indicate that horizontal gene transfer (HGT) of genes/gene fragments encoding PS-LRR domains occurred between bacteria and plants, and HGT among the eleven bacterial species, of the three phyla, as opposed to descent from a common ancestor. There is the possibility of the occurrence of one HGT event from plant to bacteria. A series of HGTs might then have occurred recently and rapidly among these eleven species of bacteria.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Miyashita, H. , Kuroki, Y. , Kretsinger, R. and Matsushima, N. (2013) Horizontal gene transfer of plant-specific leucine-rich repeats between plants and bacteria. Natural Science, 5, 580-598. doi: 10.4236/ns.2013.55074.


[1] Sonnhammer, E.L., Eddy, S.R. and Durbin, R. (1997) Pfam: A comprehensive database of protein domain families based on seed alignments. Proteins: Structure, Function, and Bioinformatics, 28, 405-420. doi:10.1002/(SICI)1097-0134(199707)28:3<405::AID-PROT10>3.0.CO;2-L
[2] Letunic, I., Doerks, T. and Bork, P. (2012) SMART 7: Recent updates to the protein domain annotation resource. Nucleic Acids Research, 40, D302-D305. doi:10.1093/nar/gkr931
[3] Sigrist, C.J., Cerutti, L., de Castro, E., Langendijk-Genevaux, P.S., Bulliard, V., Bairoch, A. and Hulo, N. (2010) PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Research, 38, D161-D166. doi:10.1093/nar/gkp885
[4] Burge, S., Kelly, E., Lonsdale, D., Mutowo-Muellenet, P., McAnulla, C., Mitchell, A., Sangrador-Vegas, A., Yong, S.Y., Mulder, N. and Hunter, S. (2012) Manual GO annotation of predictive protein signatures: The InterPro approach to GO curation. Database (Oxford), 2012, bar068. doi:10.1093/database/bar068
[5] Kobe, B. and Deisenhofer, J. (1994) The leucine-rich repeat: A versatile binding motif. Trends in Biochemical Sciences, 19, 415-421. doi:10.1016/0968-0004(94)90090-6
[6] Kobe, B. and Kajava, A.V. (2001) The leucine-rich repeat as a protein recognition motif. Current Opinion in Structural Biology, 11, 725-732.
[7] Matsushima, N., Tachi, N., Kuroki, Y., Enkhbayar, P., Osaki, M., Kamiya, M. and Kretsinger, R.H. (2005) Structural analysis of leucine-rich-repeat variants in proteins associated with human diseases. Cellular and Molecular Life Sciences, 62, 2771-2791. doi:10.1007/s00018-005-5187-z
[8] Bella, J., Hindle, K.L., McEwan, P.A. and Lovell, S.C. (2008) The leucine-rich repeat structure. Cellular and Molecular Life Sciences, 65, 2307-2333. doi:10.1007/s00018-008-8019-0
[9] Matsushima, N., Enkhbayar, P., Kamiya, M., Osaki, M. and Kretsinger, R. (2005) Leucine-Rich Repeats (LRRs): Structure, function, evolution and interaction with ligands. Drug Design Reviews, 2, 305-322. doi:10.2174/1567269054087613
[10] Ng, A. and Xavier, R.J. (2011) Leucine-rich repeat (LRR) proteins: Integrators of pattern recognition and signaling in immunity. Autophagy, 7, 1082-1084. doi:10.4161/auto.7.9.16464
[11] Park, H., Huxley-Jones, J., Boot-Handford, R.P., Bishop, P.N., Attwood, T.K. and Bella, J. (2008) LRRCE: A leucine-rich repeat cysteine capping motif unique to the chordate lineage. BMC Genomics, 9, 599. doi:10.1186/1471-2164-9-599
[12] Kajava, A.V. (1998) Structural diversity of leucine-rich repeat proteins. Journal of Molecular Biology, 277, 519527. doi:10.1006/jmbi.1998.1643
[13] Matsushima, N., Miyashita, H., Mikami, T. and Kuroki, Y. (2010) A nested leucine rich repeat (LRR) domain: the precursor of LRRs is a ten or eleven residue motif. BMC Microbiology, 10, 235. doi:10.1186/1471-2180-10-235
[14] Kajava, A.V., Anisimova, M. and Peeters, N. (2008) Origin and evolution of GALA-LRR, a new member of the CC-LRR subfamily: from plants to bacteria? PLoS One, 3, e1694. doi:10.1371/journal.pone.0001694
[15] Matsushima, N., Ohyanagi, T., Tanaka, T. and Kretsinger, R.H. (2000) Super-motifs and evolution of tandem leucine-rich repeats within the small proteoglycans-biglycan, decorin, lumican, fibromodulin, PRELP, keratocan, osteoadherin, epiphycan, and osteoglycin. Proteins: Structure, Function, and Bioinformatics, 38, 210-225. doi:10.1002/(SICI)1097-0134(20000201)38:2<210::AID-PROT9>3.0.CO;2-1
[16] Matsushima, N., Tanaka, T., Enkhbayar, P., Mikami, T., Taga, M., Yamada, K. and Kuroki, Y. (2007) Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors. BMC Genomics, 8, 124. doi:10.1186/1471-2164-8-124
[17] Afzal, A.J., Wood, A.J. and Lightfoot, D.A. (2008) Plant receptor-like serine threonine kinases: Roles in signaling and plant defense. Molecular Plant-Microbe Interactions, 21, 507-517. doi:10.1094/MPMI-21-5-0507
[18] Dievart, A. and Clark, S.E. (2004) LRR-containing receptors regulating plant development and defense. Development, 131, 251-261. doi:10.1242/dev.00998
[19] Di Matteo, A., Bonivento, D., Tsernoglou, D., Federici, L. and Cervone, F. (2006) Polygalacturonase-inhibiting protein (PGIP) in plant defence: A structural view. Phytochemistry, 67, 528-533. doi:10.1016/j.phytochem.2005.12.025
[20] Di Matteo, A., Federici, L., Mattei, B., Salvi, G., Johnson, K.A., Savino, C., De Lorenzo, G., Tsernoglou, D. and Cervone, F. (2003) The crystal structure of polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein involved in plant defense. Proceedings of the National Academy of Sciences of the United States of America, 100, 10124-10128. doi:10.1073/pnas.1733690100
[21] Hothorn, M., Belkhadir, Y., Dreux, M., Dabi, T., Noel, J.P., Wilson, I.A. and Chory, J. (2011) Structural basis of steroid hormone perception by the receptor kinase BRI1. Nature, 474, 467-471. doi:10.1038/nature10153
[22] She, J., Han, Z., Kim, T.W., Wang, J., Cheng, W., Chang, J., Shi, S., Wang, J., Yang, M., Wang, Z.Y. and Chai, J. (2011) Structural insight into brassinosteroid perception by BRI1. Nature, 474, 472-476. doi:10.1038/nature10178
[23] Enkhbayar, P., Kamiya, M., Osaki, M., Matsumoto, T. and Matsushima, N. (2004) Structural principles of leucinerich repeat (LRR) proteins. Proteins: Structure, Function, and Bioinformatics, 54, 394-403. doi:10.1002/prot.10605
[24] Bublitz, M., Holland, C., Sabet, C., Reichelt, J., Cossart, P., Heinz, D.W., Bierne, H. and Schubert, W.D. (2008) Crystal structure and standardized geometric analysis of InlJ, a listerial virulence factor and leucine-rich repeat protein with a novel cysteine ladder. Journal of Molecular Biology, 378, 87-96. doi:10.1016/j.jmb.2008.01.100
[25] Andrade, M.A., Ponting, C.P., Gibson, T.J. and Bork, P. (2000) Homology-based method for identification of protein repeats using statistical significance estimates. Journal of Molecular Biology, 298, 521-537. doi:10.1006/jmbi.2000.3684
[26] Zhou, B., Dolan, M., Sakai, H. and Wang, G.L. (2007) The genomic dynamics and evolutionary mechanism of the Pi2/9 locus in rice. Molecular Plant-Microbe Interactions, 20, 63-71. doi:10.1094/MPMI-20-0063
[27] Hirt, R.P., Harriman, N., Kajava, A.V. and Embley, T.M. (2002) A novel potential surface protein in Trichomonas vaginalis contains a leucine-rich repeat shared by microorganisms from all three domains of life. Molecular and Biochemical Parasitology, 125, 195-199. doi:10.1016/S0166-6851(02)00211-6
[28] Lurie-Weinberger, M.N., Gomez-Valero, L., Merault, N., Glockner, G., Buchrieser, C. and Gophna, U. (2010) The origins of eukaryotic-like proteins in Legionella pneumophila. International Journal of Medical Microbiology, 300, 470-481. doi:10.1016/j.ijmm.2010.04.016
[29] Bock, R. (2010) The give-and-take of DNA: Horizontal gene transfer in plants. Trends in Plant Science, 15, 1122. doi:10.1016/j.tplants.2009.10.001
[30] Matsushima, N., Miyashita, H., Mikami , T. and Yamada, K. (2011) A new method for the identification of leucinerich repeats by incorporating protein secondary structure prediction. In Bioinformatics: Genome Bioinformatics and Computational Biology (Tuteja, R., Eds). NOVA Sience Pulishers, Hauppauge.
[31] Pearson, W. (2004) Finding protein and nucleotide similarities with FASTA. Current Protocols in Bioinformatics, Chapter 3, Units 3-9. doi:10.1002/0471250953.bi0309s04
[32] Bowler, C., Allen, A.E., Badger, J.H., Grimwood, J., Jabbari, K., Kuo, A., Maheswari, U., Martens, C., Maumus, F., Otillar, R.P., Rayko, E., Salamov, A., Vandepoele, K., Beszteri, B., Gruber, A., Heijde, M., Katinka, M., Mock, T., Valentin, K., Verret, F., Berges, J.A., Brownlee, C., Cadoret, J.P., Chiovitti, A., Choi, C.J., Coesel, S., De Martino, A., Detter, J.C., Durkin, C., Falciatore, A., Fournet, J., Haruta, M., Huysman, M.J., Jenkins, B.D., Jiroutova, K., Jorgensen, R.E., Joubert, Y., Kaplan, A., Kroger, N., Kroth, P.G., La Roche, J., Lindquist, E., Lommer, M., Martin-Jezequel, V., Lopez, P.J., Lucas, S., Mangogna, M., McGinnis, K., Medlin, L.K., Montsant, A., Oudot-Le Secq, M.P., Napoli, C., Obornik, M., Parker, M.S., Petit, J.L., Porcel, B.M., Poulsen, N., Robison, M., Rychlewski, L., Rynearson, T.A., Schmutz, J., Shapiro, H., Siaut, M., Stanley, M., Sussman, M.R., Taylor, A.R., Vardi, A., von Dassow, P., Vyverman, W., Willis, A., Wyrwicz, L.S., Rokhsar, D.S., Weissenbach, J., Armbrust, E.V., Green, B.R., Van de Peer, Y. and Grigoriev, I.V. (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature, 456, 239-244. doi:10.1038/nature07410
[33] Smoot, M.E., Ono, K., Ruscheinski, J., Wang, P.L. and Ideker, T. (2011) Cytoscape 2.8: New features for data integration and network visualization. Bioinformatics, 27, 431-432. doi:10.1093/bioinformatics/btq675
[34] Horton, P., Park, K.J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C.J. and Nakai, K. (2007) WoLF PSORT: Protein localization predictor. Nucleic Acids Research, 35, W585-W587. doi:10.1093/nar/gkm259
[35] Bendtsen, J.D., Nielsen, H., von Heijne, G. and Brunak, S. (2004) Improved prediction of signal peptides: SignalP 3.0. Journal of Molecular Biology, 340, 783-795. doi:10.1016/j.jmb.2004.05.028
[36] Shen, H.B. and Chou, K.C. (2007) Signal-3L: A 3-layer approach for predicting signal peptides. Biochemical and Biophysical Research Communications, 363, 297-303. doi:10.1016/j.bbrc.2007.08.140
[37] von Heijne, G. (1985) Signal sequences. The limits of variation. Journal of Molecular Biology, 184, 99-105.
[38] Crooks, G.E., Hon, G., Chandonia, J.M. and Brenner, S.E. (2004) WebLogo: A sequence logo generator. Genome Research, 14, 1188-1190. doi:10.1101/gr.849004
[39] Che, D., Hasan, M.S., Wang, H., Fazekas, J., Huang, J. and Liu, Q. (2011) EGID: An ensemble algorithm for improved genomic island detection in genomic sequences. Bioinformation, 7, 311-314. doi:10.6026/007/97320630007311
[40] Vernikos, G.S. and Parkhill, J. (2006) Interpolated variable order motifs for identification of horizontally acquired DNA: Revisiting the Salmonella pathogenicity islands. Bioinformatics, 22, 2196-2203. doi:10.1093/bioinformatics/btl369
[41] Rajan, I., Aravamuthan, S. and Mande, S.S. (2007) Identification of compositionally distinct regions in genomes using the centroid method. Bioinformatics, 23, 2672-2677. doi:10.1093/bioinformatics/btm405
[42] Waack, S., Keller, O., Asper, R., Brodag, T., Damm, C., Fricke, W.F., Surovcik, K., Meinicke, P. and Merkl, R. (2006) Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. BMC Bioinformatics, 7, 142. doi:10.1186/1471-2105-7-142
[43] Hsiao, W., Wan, I., Jones, S.J. and Brinkman, F.S. (2003) IslandPath: Aiding detection of genomic islands in prokaryotes. Bioinformatics, 19, 418-420. doi:10.1093/bioinformatics/btg004
[44] Shrivastava, S., Reddy, Ch. and Mande, S.S. (2010) INDeGenIUS, a new method for high-throughput identification of specialized functional islands in completely sequenced organisms. Journal of Biosciences, 35, 351364. doi:10.1007/s12038-010-0040-4
[45] Tu, Q. and Ding, D. (2003) Detecting pathogenicity islands and anomalous gene clusters by iterative discriminant analysis. FEMS Microbiology Letters, 221, 269-275. doi:10.1016/S0378-1097(03)00204-0
[46] Hammond-Kosack, K.E. and Jones, J.D. (1997) Plant disease resistance genes. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 575-607. doi:10.1146/annurev.arplant.48.1.575
[47] So, C.M. and Young, L.Y. (1999) Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. Applied and Environmental Microbiology, 65, 2969-2976.
[48] Mussmann, M., Hu, F.Z., Richter, M., de Beer, D., Preisler, A., Jorgensen, B.B., Huntemann, M., Glockner, F.O., Amann, R., Koopman, W.J., Lasken, R.S., Janto, B., Hogg, J., Stoodley, P., Boissy, R. and Ehrlich, G.D. (2007) Insights into the genome of large sulfur bacteria revealed by analysis of single filaments. PLoS Biology, 5, e230. doi:10.1371/journal.pbio.0050230
[49] Bhaya, D., Grossman, A.R., Steunou, A.S., Khuri, N., Cohan, F.M., Hamamura, N., Melendrez, M.C., Bateson, M.M., Ward, D.M. and Heidelberg, J.F. (2007) Population level functional diversity in a microbial community revealed by comparative genomic and metagenomic analyses. ISME Journal, 1, 703-713. doi:10.1038/ismej.2007.46
[50] Webb, E.A., Ehrenreich, I.M., Brown, S.L., Valois, F.W. and Waterbury, J.B. (2009) Phenotypic and genotypic characterization of multiple strains of the diazotrophic cyanobacterium, Crocosphaera watsonii, isolated from the open ocean. Environmental Microbiology, 11, 338348. doi:10.1111/j.1462-2920.2008.01771.x
[51] Pinhassi, J., Bowman, J.P., Nedashkovskaya, O.I., Lekunberri, I., Gomez-Consarnau, L. and Pedros-Alio, C. (2006) Leeuwenhoekiella blandensis sp. nov., a genomesequenced marine member of the family Flavobacteriaceae. International Journal of Systematic and Evolutionary Microbiology, 56, 1489-1493. doi:10.1099/ijs.0.64232-0
[52] Gomez-Consarnau, L., Gonzalez, J.M., Coll-Llado, M., Gourdon, P., Pascher, T., Neutze, R., Pedros-Alio, C. and Pinhassi, J. (2007) Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature, 445, 210-213. doi:10.1038/nature05381
[53] Oh, H.M., Giovannoni, S.J., Lee, K., Ferriera, S., Johnson, J. and Cho, J.C. (2009) Complete genome sequence of Robiginitalea biformata HTCC2501. Journal of Bacteriology, 191, 7144-7145. doi:10.1128/JB.01191-09
[54] Gupta, R.S. and Lorenzini, E. (2007) Phylogeny and molecular signatures (conserved proteins and indels) that are specific for the Bacteroidetes and Chlorobi species. BMC Evolutionary Biology, 7, 71. doi:10.1186/1471-2148-7-71
[55] Kitahara, M., Sakamoto, M., Ike, M., Sakata, S. and Benno, Y. (2005) Bacteroides plebeius sp. nov. and Bacteroides coprocola sp. nov., isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 55, 2143-2147. doi:10.1099/ijs.0.63788-0
[56] Matsushima, N., Mikami, T., Tanaka, T., Miyashita, H., Yamada, K. and Kuroki, Y. (2009) Analyses of nonleucine-rich repeat (non-LRR) regions intervening between LRRs in proteins. Biochimica et Biophysica Acta, 1790, 1217-1237. doi:10.1016/j.bbagen.2009.06.014
[57] Gueneron, M., Timmers, A.C., Boucher, C. and Arlat, M. (2000) Two novel proteins, PopB, which has functional nuclear localization signals, and PopC, which has a large leucine-rich repeat domain, are secreted through the Hrpsecretion apparatus of Ralstonia solanacearum. Molecular Microbiology, 36, 261-277. doi:10.1046/j.1365-2958.2000.01870.x
[58] Afonso, C.L., Tulman, E.R., Lu, Z., Oma, E., Kutish, G.F. and Rock, D.L. (1999) The genome of Melanoplus sanguinipes entomopoxvirus. Journal of Virology, 73, 533552.
[59] Bycroft, M., Bateman, A., Clarke, J., Hamill, S.J., Sandford, R., Thomas, R.L. and Chothia, C. (1999) The structure of a PKD domain from polycystin-1: Implications for polycystic kidney disease. EMBO Journal, 18, 297-305. doi:10.1093/emboj/18.2.297
[60] Schwarz, E.M. and Benzer, S. (1997) Calx, a Na-Ca exchanger gene of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 94, 10249-10254. doi:10.1073/pnas.94.19.10249
[61] Bork, P., Holm, L. and Sander, C. (1994) The immunoglobulin fold. Structural classification, sequence patterns and common core. Journal of Molecular Biology, 242, 309-320. doi:10.1006/jmbi.1994.1582
[62] Chae, H.Z., Robison, K., Poole, L.B., Church, G., Storz, G. and Rhee, S.G. (1994) Cloning and sequencing of thiolspecific antioxidant from mammalian brain: Alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proceedings of the National Academy of Sciences of the United States of America, 91, 7017-7021. doi:10.1073/pnas.91.15.7017
[63] Kosowska, K., Reinholdt, J., Rasmussen, L.K., Sabat, A., Potempa, J., Kilian, M. and Poulsen, K. (2002) The Clostridium ramosum IgA proteinase represents a novel type of metalloendopeptidase. Journal of Biological Chemistry, 277, 11987-11994. doi:10.1074/jbc.M110883200
[64] Lehti-Shiu, M.D., Zou, C., Hanada, K. and Shiu, S.H. (2009) Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes. Plant Physiology, 150, 12-26. doi:10.1104/pp.108.134353
[65] Haigis, M.C., Haag, E.S. and Raines, R.T. (2002) Evolution of ribonuclease inhibitor by exon duplication. Molecular Biology and Evolution, 19, 959-963. doi:10.1093/oxfordjournals.molbev.a004153
[66] Pitts, G., Allam, A.I. and Hollis, J.P. (1972) Beggiatoa: Occurrence in the rice rhizosphere. Science, 178, 990-992. doi:10.1126/science.178.4064.990
[67] Joshi, M.M. and Hollis, J.P. (1977) Interaction of beggiatoa and rice plant: Detoxification of hydrogen sulfide in the rice rhizosphere. Science, 195, 179-180. doi:10.1126/science.195.4274.179
[68] Armbrust, E.V., Berges, J.A., Bowler, C., Green, B.R., Martinez, D., Putnam, N.H., Zhou, S., Allen, A.E., Apt, K.E., Bechner, M., Brzezinski, M.A., Chaal, B.K., Chiovitti, A., Davis, A.K., Demarest, M.S., Detter, J.C., Glavina, T., Goodstein, D., Hadi, M.Z., Hellsten, U., Hildebrand, M., Jenkins, B.D., Jurka, J., Kapitonov, V.V., Kroger, N., Lau, W.W., Lane, T.W., Larimer, F.W., Lippmeier, J.C., Lucas, S., Medina, M., Montsant, A., Obornik, M., Parker, M.S., Palenik, B., Pazour, G.J., Richardson, P.M., Rynearson, T.A., Saito, M.A., Schwartz, D.C., Thamatrakoln, K., Valentin, K., Vardi, A., Wilkerson, F.P. and Rokhsar, D.S. (2004) The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science, 306, 79-86. doi:10.1126/science.1101156
[69] Craig, K.L. and Tyers, M. (1999) The F-box: A new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. Progress in Biophysics and Molecular Biology, 72, 299-328. doi:10.1016/S0079-6107(99)00010-3
[70] Ho, M.S., Tsai, P.I. and Chien, C.T. (2006) F-box proteins: The key to protein degradation. Journal of Biomedical Science, 13, 181-191. doi:10.1007/s11373-005-9058-2
[71] Keeling, P.J. (2010) The endosymbiotic origin, diversification and fate of plastids. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 729-748. doi:10.1098/rstb.2009.0103
[72] Rujan, T. and Martin, W. (2001) How many genes in Arabidopsis come from cyanobacteria? An estimate from 386 protein phylogenies. Trends in Genetics, 17, 113-120. doi:10.1016/S0168-9525(00)02209-5
[73] Chan, C.X., Darling, A.E., Beiko, R.G. and Ragan, M.A. (2009) Are protein domains modules of lateral genetic transfer? PLoS One, 4, e4524. doi:10.1371/journal.pone.0004524
[74] Keeling, P.J. and Palmer, J.D. (2008) Horizontal gene transfer in eukaryotic evolution. Nature Reviews Genetics, 9, 605-618. doi:10.1038/nrg2386
[75] Cotter, P.A. and DiRita, V.J. (2000) Bacterial virulence gene regulation: An evolutionary perspective. Annual Review of Microbiology, 54, 519-565. doi:10.1146/annurev.micro.54.1.519
[76] Aminov, R.I. (2011) Horizontal gene exchange in environmental microbiota. Frontiers in Microbiology, 2, 158. doi:10.3389/fmicb.2011.00158

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.