Mineral and Sea-Salt Aerosol Fluxes over the Last 340 kyr Reconstructed from the Total Concentration of Al and Na in the Dome Fuji Ice Core

Abstract

A quantitative analysis of the total concentrations of Al and Na in the Antarctic ice sheet during the past 340 kyr was performed by applying the acid digestion method to the Dome Fuji ice core. Atmospheric fluxes of mineral and sea-salt aerosol to Dome Fuji were calculated from the total concentration. The average fluxes of mineral aerosol to Dome Fuji in the periods of glacial maximum, 18.6 ± 10.1 mg·m2·yr–1, were larger than the value in the interglacial periods, 3.77 ± 2.20 mg·m–2·yr–1. Conversely, the fluxes of sea-salt have no significant difference between the average value of glacial maximum, 130 ± 55 mg·m–2·yr–1, and that of interglacial, 111 ± 54 mg·m–2·yr–1. The results obtained in this study suggest that the variation of mineral aerosol flux in Dome Fuji, together with climate change, was much larger than that of sea-salt aerosol flux. This result may have occurred because the variety in the intensity of the source and transport during the glacial-interglacial cycle is more significant for mineral aerosol than that for sea-salt aerosol.

Share and Cite:

H. Sato, T. Suzuki, M. Hirabayashi, Y. Iizuka, H. Motoyama and Y. Fujii, "Mineral and Sea-Salt Aerosol Fluxes over the Last 340 kyr Reconstructed from the Total Concentration of Al and Na in the Dome Fuji Ice Core," Atmospheric and Climate Sciences, Vol. 3 No. 2, 2013, pp. 186-192. doi: 10.4236/acs.2013.32020.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] I. Tegen, A. A. Lacis and I. Fung, “The Influence on Climate Forcing of Mineral Aerosols from Disturbed Soils,” Nature, Vol. 380, 1996, pp. 419-422. doi:10.1038/380419a0
[2] S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller, “Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,” Cambridge University Press, Cambridge, 2007.
[3] J. H. Martin, “Glacial-Interglacial CO2 Change: The Iron Hypothesis,” Paleoceanography, Vol. 5, 1990, pp. 1-13. doi:10.1029/PA005i001p00001
[4] T. Oba and T. F. Pedersen, “Paleoclimatic Significance of Eolian Carbonates Supplied to the Japan Sea during the Last Glacial Maximum,” Paleoceanography, Vol. 14, 1999, pp. 34-41. doi:10.1029/ 98PA02507
[5] H. Fischer, M.-L. Siggaard-Andersen, U. Ruth, R. Rothlisberger and E. Wolff, “Glacial/Interglacial Changes in Mineral Dust and Sea-Salt Records in Polar Ice Cores: Sources, Transport, and Deposition,” Reviews of Geophysics, Vol. 45, 2007, pp. 1-26. doi:10.1029/2005RG000192
[6] R. Traversi, C. Barbante, V. Gaspari, I. Fattori, O. Largiuni, L. Magaldi and R. Udisti, “Aluminum and Iron Record for the Last 28 kyr Derived from the Antarctic EDC96 Ice Core Using New CFA Methods,” Annals of Glaciology, Vol. 32, 2004, pp. 300-306. doi:10.3189/172756404781814438
[7] M. Bigler, R. Rothlisberger, F. Lambert, T. F. Stocker and D. Wagenbach, “Aerosol Deposited in East Antarctica over the Last Glacial Cycle: Detailed Apportionment of Continental and Sea-Salt Contributions,” Journal of Geophysical Research, Vol. 111, 2006, Article ID: D08205. doi:10.1029/2005 JD006469
[8] G. Ghermandi, R. Cecchi, M. Capotosto and F. Marino, “Elemental Composition Determined by PIXE Analysis of the Insoluble Aerosol Particles in EPICA-Dome C Ice Core Samples Representing the Last 27,000 Years,” Geophysical Research Letters, Vol. 30, 2003, pp. 21-76. doi:10.1029/2003GL018169
[9] F. Marino, V. Maggi, B. Delmonte, G. Ghermandi and J. R. Petit, “Elemental Composition (Si, Fe, Ti) of Atmospheric Dust over the Last 220 kyr from the EPICA Ice Core (Dome C, Antarctica),” Annals of Glaciology, Vol. 39, 2004, pp. 110-118. doi:10.3189/172756404781813862
[10] V. Gaspari, C. Barbante, G. Cozzi, P. Cescon, C. F. Boutron, P. Gabrielli, G. Capodaglio, C. Ferrari, J. R. Petit and B. Delmonte, “Atmospheric Iron Fluxes over the Last Deglaciation: Climatic Implications,” Geophysical Research Letters, Vol. 33, 2006, Article ID: L03704. doi:10.1029/2005GL024352
[11] R. Losno, J. L. Colin, N. Lebris, G. Bergametti, T. Jickells and B. Lim, “Aluminum Solubility in Rainwater and Molten Snow,” Journal of Atmospheric Chemistry, Vol. 17, 1993, pp. 29-43. doi:10.1007/BF00699112
[12] S. Kawakubo and M. Iwatsuki, “Speciation of Iron in Rain Water by Size Fractionation, Acid Decomposition, Acid Extraction and Catalytic Determination,” Analytical Sciences, Vol. 16, 2000, pp. 945-949. doi:10.2116/analsci.16.945
[13] M.-L. Siggaard-Anderse, P. Gabrielli, J. P. Steffensen, T. Stramfeldt, C. Barbante, C. Boutron, H. Fischer and H. Miller, “Soluble and Insoluble Lithium Dust in the EPICA Dome C Ice Core—Implications for Changes of the East Antarctic Dust Provenance during the Recent Glacial-Interglacial Transition,” Earth and Planetary Science Letters, Vol. 258, 2007, pp. 32-43. doi:10.1016/j.epsl.2007.03.013
[14] R. H. Rhode, J. A. Baker, M.-A. Millet and N. A. N. Bertler, “Experimental Investigation of the Effects of Mineral Dust on the Reproducibility and Accuracy of Ice Core Trace Element Analyses,” Geochemical Geology, Vol. 286, 2011, pp. 207-211. doi:10.1016/j.chemgeo.2011.05.006
[15] Dome-F. Deep Coring Group, “Deep Ice-Core Drilling at Dome Fuji and Glaciological Studies in East Dronning Maud Land, Antarctica,” Annals of Glaciology, Vol. 27, 1998, pp. 333-337.
[16] O. Watanabe, J. Jouzel, S. Johnsen, F. Parrenin, H. Shoji and N. Yoshida, “Homogeneous Climate Variability across East Antarctica over the Past Three Glacial Cycles,” Nature, Vol. 422, 2003, pp. 509-512. doi:10.1038/nature01525
[17] K. Kawamura, F. Parrenin, L. Lisiecki, R. Uemura, F. Vimeux, J. P. Severinghaus, M. A. Hutterli, T. Nakazawa, S. Aoki, J. Jouzel, M. E. Raymo, K. Matsumoto, H. Nakata, H. Motoyama, S. Fujita, K. Goto-Azuma, Y. Fujii and O. Watanabe, “Northern Hemisphere Forcing of Climatic Cycles in Antarctica over the Past 360,000 Years,” Nature, Vol. 448, 2007, pp. 912-916. doi:10.1038/nature06015
[18] Dome-F. Ice Core Research Group, “Preliminary Investigation of Palaeoclimate Signals Recorded in the Ice Core from Dome Fuji Station, East Dronning Maud Land, Antarctica,” Annals of Glaciology, Vol. 27, 1998, pp. 338-342.
[19] Y. Fujii, M. Kohno, S. Matoba, H. Motoyama and O. Watanabe, “A 320 K-Year Record of Microparticles in the Dome Fuji, Antarctica Ice Core Measured by Laser-Light Scattering,” Memories of National Institute of Polar Research Special Issue, Vol. 57, 2003, pp. 46-62.
[20] Y. Fujii, M. Kohno, H. Motoyama, S. Matoba, O. Watanabe, S. Fujita, N. Azuma, T. Kikuchi, T. Fukuoka and T. Suzuki, “Tephra Layers in the Dome Fuji (Antarctica) Deep Ice Core,” Annals of Glaciology, Vol. 29, 1999, pp. 126-130. doi:10.3189/172756499781821003
[21] H. Ohno, M. Igarashi and T. Hondoh, “Salt Inclusions in Polar Ice Core: Location and Chemical Form of WaterSoluble Impurities,” Earth and Planetary Science Letters, Vol. 232, 2005, pp. 171-178. doi:10.1016/j.epsl.2005.01.001
[22] Y. Iizuka, T. Miyake, M. Hirabayashi, T. Suzuki, S. Matoba, H. Motoyama, Y. Fujii and T. Hondoh, “Constituent Elements of Insoluble and Non-Volatile Particles during the Last Glacial Maximum Exhibited in the Dome Fuji (Antarctica) Ice Core,” Annals of Glaciology, Vol. 55, 2009, pp. 552-562. doi:10.3189/002214309788816696
[23] Y. Iizuka, R. Uemura, H. Motoyama, T. Suzuki, T. Miyake, M. Hirabayashi and T. Hondoh, “Sulphate-Climate Coupling over the Past 300,000 Years in Inland Antarctica,” Nature, Vol. 490, 2012, pp. 81-84. doi:10.1038/nature11359
[24] T. Suzuki and M. Sensui, “Application of Microwave Acid Digestion Method to the Decomposition of Rock Samples,” Analytica Chimca Acta, Vol. 245, 1991, pp. 43-48. doi:10.1016/S0003-2670(00)80199-3
[25] M. De Angelis, N. I. Barkov and V. N. Petrov, “Aerosol Concentrations over the Last Climatic Cycle (160 kyr) from an Antarctic Ice Core,” Nature, Vol. 325, 1987, pp. 318-321. doi:10.1038/325318a0
[26] CLIMAP Project Members, “The Surface of the Ice-Age Earth,” Science, Vol. 191, 1976, pp. 1131-1144. doi:10.1126/science.191.4232.1131
[27] M. Ram, R. I. Gayley and J. R. Petit, “Insoluble Particles in Antarctic Ice: Background Aerosol Size Distribution and Diatom Concentration,” Journal of Geophysical Research, Vol. 93, 1988, pp. 8378-8382. doi:10.1029/JD093iD07p08378
[28] P. A. Mayewski, L. D. Meeker, S. Whitlow, M. S. Twickler, M. C. Morrison, P. Bloomfield, G. C. Bond, R. B. Alley, A. J. Gow, P. M. Grootes, D. A. Meese, M. Ram, K. C. Taylor and W. Wumkes, “Changes in Atmospheric Circulation and Ocean Ice Cover over the North Atlantic during the Last 41,000 Years,” Science, Vol. 263, 1994, pp. 1747-1751. doi:10.1126/science.263.5154.1747
[29] J. P. Steffensen, “The Size Distribution of Microparticles from Selected Segments of the Greenland Ice Core Project Ice Core Representing Different Climatic Periods,” Journal of Geophysical Research, Vol. 102, 1997, pp. 26755-26763. doi:10.1029/97JC01490
[30] M. C. Reader, I. Fung and N. McFarlane, “The Mineral Dust Aerosol Cycle during the Last Glacial Maximum,” Journal of Geophysical Research, Vol. 104, 1999, pp. 9381-9398. doi:10.1029/199 9JD900033
[31] T. Irino and R. Tada, “High-Resolution Reconstruction of Variation in Aeolian Dust (Kosa) Deposition at ODP Site 797, the Japan Sea, during the Last 200 ka,” Global and Planetary Change, Vol. 35, 2003, pp. 143-156. doi:10.1016/S0921-8181(02)00135-2
[32] S. R. Taylor, “The Abundance of Chemical Elements in the Continental Crust: A New Table,” Geochimicaet Cosmochimica Acta, Vol. 28, 1964, pp. 1273-1285. doi:10.1016/0016-7037(64)90129-2
[33] W. S. Broecker and T.-H. Peng, “Tracers in the Sea,” Eldigio Press, Palisades, New York, 1982.
[34] T. Suzuki and S. Tsunogai, “Origin of Calcium in Aerosols over the Western North Pacific,” Journal of Atmospheric Chemistry, Vol. 6, 1988, pp. 363-374. doi:10.1007/BF00051597
[35] S. A. Hovan, D. K. Rea, N. G. Pisias and N. J. Shackleton, “A Direct Link between the China Loess and Marine d18O Records: Aeolian Flux to the North Pacific,” Nature, Vol. 340, 1989, pp. 296-298. doi:10.1038/340296a0
[36] S. C. Clemens and W. L. Prell, “Late Pleistocene Variability of Arabian Sea Summer Monsoon Winds and Continental Aridity: Eolian Records from the Lithogenic Component of Deep-Sea Sediments,” Paleoceanography, Vol. 5, 1990, pp. 109-145. doi:10.1029/PA005i002p00109
[37] P. B. deMenocal, W. F. Ruddiman and E. M. Pokras, “Influences of Highand Low-Latitude Processes on African Terrestrial Climate: Pleistocene Eolian Records from Equatorial Atlantic Ocean Drilling Program Site 663,” Paleoceanography, Vol. 8, 1993, pp. 209-242.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.