Application and Popularization of Formal Calculation

Abstract

Formal Calculation, formerly known as the Shape of Numbers, is suitable for calculating some nested sums. The formula has been obtained, and the calculation problem of various combinations of arithmetic sequences has been solved. This paper analysis the coefficients of the formulas and obtain some simplified identities. Furthermore, the Formal Calculation is extended from binomial coefficient to Gaussian coefficient, and the application is extended from two parameters forms to multiparameter forms.

Share and Cite:

Peng, J. (2022) Application and Popularization of Formal Calculation. Open Access Library Journal, 9, 1-21. doi: 10.4236/oalib.1109483.

1. Introduction

Peng, J. has introduced the Shape of Numbers and three forms of calculation in [1]: K i , D i CommutativeRing .

M series: S e r i e i = { K i , K i + D i , K i + 2 D i , , K i + ( N 1 ) D i } , i [ 1 , M ]

Use P S = [ K 1 : D 1 , , K M : D M ] to represent the series.

[ K 1 : 1 , , K M : 1 ] is abbreviated as [ K 1 , , K M ] .

[ K 1 : D , , K M : D ] is abbreviated as [ K 1 , , K M ] : D .

Use P T = [ T 1 , T 2 , , T M ] to indicate some items in M series (the Shape).

By default, the following uses:

P S = [ K 1 : D 1 , K 2 : D 2 , , K M : D M ] , P T = [ T 1 , T 2 , , T M ]

P S A = [ K 1 : D 1 , , K M : D M , K M + 1 : D M + 1 ] = [ P S , K M + 1 : D M + 1 ] ,

P T A = [ P T , T M + 1 = T M + 2 p ]

Recursive definie operator P , p :

0 f ( n ) = f ( n ) , n = 0 N 1 1 f ( n + 1 ) = f ( N ) , n = 0 N 1 f ( n + 1 ) = 1 f ( N )

Recursive define SUN(N, PS, PT), abbreviated as SUM(N):

S U M ( N , [ K 1 : D 1 ] , [ T 1 = 1 ] ) = n = 0 N 1 ( K 1 + n × D 1 )

S U M ( N , P S A , P T A ) = n = 0 N 1 ( K M + 1 + n × D M + 1 ) × p S U M ( n + 1 )

For example:

S U M ( N , P S , [ 1 , 2 , , M ] ) = n = 0 N 1 i = 1 M ( K i + n D i )

S U M ( N , P S , [ 1 , 3 , , 2 M 1 ] ) = n M = 0 N 1 ( K M + n M D M ) n 1 = 0 n 2 ( K 2 + n 2 D 2 ) n 1 = 0 n 2 ( K 1 + n 1 D 1 )

S U M ( N , P S , [ 1 , 2 , 4 ] ) = n 3 = 0 N 1 ( K 3 + n 3 D 3 ) n = 0 n 3 ( K 2 + n D 1 ) ( K 1 + n D 1 )

S U M ( N , P S , [ 1 , 3 , 4 ] ) = n = 0 N 1 ( K 3 + n D 3 ) ( K 2 + n D 2 ) n 1 = 0 n ( K 1 + n 1 D 1 )

S U M ( N , P S , [ 1 , 4 ] ) = n = 0 N 1 ( K 2 + n D 2 ) n 2 = 0 n n 1 = 0 n 2 ( K 1 + n 1 D 1 )

The following use K to represent set { K 1 , K 2 , , K M } , T to represent set { T 1 , T 2 , , T M } .

Use the Form: ( T 1 + K 1 ) ( T 2 + K 2 ) ( T M + K M ) = i = 1 M X i , X i = T i or K i

X ( T ) = Countof { X 1 , , X M } T ,

X T 1 = Countof { X 1 , , X i 1 } T , X K 1 = Countof { X 1 , , X i 1 } K .

Don’t swap the factors, then each X i corresponds to one expression in the SUM().

1.1) H ( q ) = X i with X ( T ) = q i = 1 M B i , q = X ( T ) , S U M ( N ) =

Form 1 q = 0 M H 1 ( q ) ( N + T M M N 1 q ) = q = 0 M H 1 ( q ) ( N + T M M T M M + 1 + q )

Form 2 q = 0 M H 2 ( q ) ( N + T M M + q N 1 ) = q = 0 M H 2 ( q ) ( N + T M M + q T M M + 1 + q )

Form 3 q = 0 M H 3 ( q ) ( N + T M q N 1 q ) = q = 0 M H 3 ( q ) ( N + T M q T M + 1 )

Form 1 B i = { ( T i X K 1 ) D i ; X i = T i K i + X T 1 D i ; X i = K i

Form 2 B i = { ( T i X K 1 ) D i ; X i = T i K i + ( X K 1 T i ) D i ; X i = K i

Form 3 B i = { K i + ( T i X T 1 ) D i ; X i = T i K i + X T 1 D i ; X i = K i

H1(q), H2(q), H3(q), short for H(q, PS, PT), is also defined above.

Sometimes use H(q) to represent these three coefficients.

If f ( n ) = A i ( N i m i ) , m i is not changed with n, then p f ( n ) = A i ( N i p m i p )

Sometimes ÑSUM(N) and sometimes SUM(N) are listed below,

The corresponding SUM(N) and ÑSUM(N) are easily obtained.

In particular, S1(), S2() is unsigned Stirling number:

1.2) S U M ( N , [ 1 , 2 , , M ] , [ 1 , 3 , , 2 M 1 ] ) = S 1 ( N + M , N ) .

1.3) S U M ( N , [ 1 , 1 , , 1 ] , [ 1 , 3 , , 2 M 1 ] ) = S 2 ( N + M , N ) .

1.4) S U M ( N , [ 1 , 1 , , 1 ] , [ 1 , 2 , , M ] ) = 1 M + 2 M + + N M

1.5) S U M ( N , P S , [ 1 , 2 , , M ] ) = i = 1 M ( K i + ( N 1 ) D i ) = i = 1 M ( K i + n D i )

1.6) In S U M ( N , [ P S ] , [ , T + 1 , T + 2 , , T + M , ] ) , K i can exchange order

1.7) S U M ( N , [ L 1 , , L P , P S ] , [ L 1 , , L P , P T ] ) = i = 1 P L i S U M ( N , P S , P T )

This indicates that T1 can be greater than 1, T is defined in ℕ.

1.8) S U M ( N , P T , P T ) = i = 1 M T i ( N + T M T M + 1 )

1.9) q = 0 M H 1 ( q ) ( A B q ) = q = 0 M H 2 ( q ) ( A + q B ) = q = 0 M H 3 ( q ) ( A + M q B q )

This indicates Form1 = Form2 = Form3. If regardless of the actual meaning, PT’s domain can be extended to .

The Shape of Numbers of [1] has nothing to do with triangle numbers, square numbers, etc. This paper calls them Formal Calculation.

2. Simplified Formula

H ( q ) = X , X T or K = ( X T ) ( X K )

Sometimes simple expressions can be obtained.

Define

F q K = { K 1 , K 2 , } = i = 1 q I i , I i K and I i I j . F q { 1 , 2 , , N } abbreviated as F q N

E q K = { K 1 , K 2 , } = i = 1 q I i , I i K , E q { 1 , 2 , , N } abbreviated as E q N

F q N = 1 λ 1 < λ 2 < < λ q N λ = S 1 ( N + q , N )

E q N = 1 λ 1 < λ 2 < < λ q N λ = λ 1 + λ 2 + + λ N = q 1 λ 1 2 λ 2 N λ N = S 2 ( N + q , N )

[ A : D ] q = A ( A D ) ( A 2 D ) ( A ( q 1 ) D ) , [ A : D ] 0 = 1

[ A : D ] q = A ( A + D ) ( A + 2 D ) ( A + ( q 1 ) D ) , [ A : D ] 0 = 1

H ( q , T ) = ( X T ) of H ( q ) , H ( q , K ) = ( X K ) of H ( q )

H ( q , T ) = H ( q , T ) , H ( q , K ) = H ( q , K )

P T = [ T 1 = T + 1 , , T M = T + M ] H 1 ( q , T ) = H 2 ( q , T ) = D q T 1 T q

P T = [ 1 , 2 , , M ] , D = 1 H 1 ( q , K ) = F M q K E 0 q + F M q 1 K E 1 q + + F 0 K E M q q

f ( n ) = a 0 + a 1 n + a 2 n 2 + + a M n M = a M ( K 1 + n ) ( K 2 + n ) ( K M + n )

F ( N ) = n = 0 N 1 f ( n ) = a M S U M ( N , [ K 1 , K 2 , , K M ] , [ 1 , 2 , , M ] )

According to Vieta’s formulas, F i K = a M i a M

H 1 ( q ) = q ! i = 0 M q F M q i K E i q = q ! i = 0 M q a q + i a M E i q

a M H 1 ( 0 ) = 0 ! a 0

a M H 1 ( 1 ) = 1 ! ( a 1 + a 2 + + a M )

a M H 1 ( 2 ) = 2 ! ( a 2 + 3 a 3 + 7 a 4 + ) = 2 ! ( S 2 ( 2 , 2 ) a 2 + S 2 ( 3 , 2 ) a 3 + S 2 ( 4 , 2 ) a 4 + )

2.1) F ( N ) = q = 0 M H 1 ( q ) ( N q + 1 )

a M [ H 1 ( 0 ) H 1 ( M ) ] = [ 0 ! M ! ] [ S 2 ( 0 , 0 ) S 2 ( M , 0 ) S 2 ( 0 , M ) S 2 ( M , M ) ] [ a 0 a M ]

It’s the same as: F ( N ) = q = 0 M a q n = 0 N 1 n q = q = 0 M a q i = 1 q i ! S 2 ( q , i ) ( N i + 1 )

2.1. PT = [T + 1, T + 2, …, T + M], PS = [P − (M − 1)D, P − (M − 2)D, …, P]:D

PS can exchange order = [ P , P D , P 2 D , ] : D

H 1 ( q , K ) = [ P : D ] M q ,

H 1 ( q , K ) = ( M M q ) H 1 ( q , K ) D = 1 ( M q ) ( P M q ) ( M q ) !

2.1.1) ( n + A A ) ( n + M + B M )

= q = 0 M ( A + q q ) ( M + B M q ) ( n + A A + q ) ,

= q = 0 M ( 1 ) M q ( A B M q ) ( A + q q ) ( n + A + q A + q ) ,

= q = 0 M ( A B q ) ( M + B M q ) ( n + A + M q A + M ) .

[Proof]

= 1 A ! M ! S U M ( N , [ 1 , 2 , , A , B + 1 , B + 2 , , B + M ] , [ 1 , 2 , , A , A + 1 , , A + M ] ) = 1 M ! S U M ( N , [ B + 1 , B + 2 , , B + M ] , [ A + 1 , A + 2 , , A + M ] ) = 1 M ! S U M ( N , [ B + M , , B + 2 , B + 1 ] , [ A + 1 , A + 2 , , A + M ] )

Form 1 = 1 M ! q = 0 M H 1 ( q ) ( N + A A + 1 + q ) = 1 M ! q = 0 M H 1 ( q ) ( n + A A + q )

H 1 ( q ) H 1 ( q , K ) = ( M M q ) ( M + B M q ) ( M q ) ! , H 1 ( q , T ) = q ! ( A + q q ) q ! ( A + q q ) ( M q ) ( M + B M q ) ( M q ) !

Form 2 H 2 ( q , K ) = [ B A ] M q 1 M ! q = 0 M [ B A ] M q [ A + 1 ] q ( M q ) ( N + A + q A + q + 1 ) = 1 M ! q = 0 M ( 1 ) M q ( A B M q ) ( M q ) ! ( A + q q ) q ! ( M q ) ( n + A + q A + q )

Form 3 H 3 ( q , T ) = [ A B ] q 1 M ! q = 0 M [ A B ] q ( M q ) ( M + B M q ) ( M q ) ! ( n + A + M q A + M )

q.e.d.

A = M , B = 0 ( n + M M ) 2 Form 1 q = 0 M ( M + q q ) ( M q ) ( n + M M + q ) ,

A = M , B = 0 ( n + M M ) 2 Form 3 q = 0 M ( M q ) 2 ( n + 2 M q 2 M ) , record at [2]: (6.32).

B = 0 ( n + A A ) ( n + M M ) Form 3 q = 0 M ( A q ) ( M q ) ( n + A + M q A + M ) , record at [2]: (6.21).

A = 0 ( x + y M ) = q = 0 M ( x M q ) ( y q )

if 0 < B < M , P S = [ 0 , 1 , , ( B 1 ) , A , A + 1 , , A + ( M B 1 ) ]

H 1 ( q ) 0 X 1 , X 2 , , X B T H 1 ( q < B , K ) = 0

Method of 2.1.1) H 1 ( q B , K ) = ( M B M q ) [ A + ( M 1 ) ] M q .

2.1.2) ( n + X A ) ( n + Y M ) = g = 0 A ( M + g g ) ( M + X Y A g ) ( n + Y M + g ) , 0 Y M

[Proof]

= 1 A ! M ! S U M ( N , [ X , X 1 , , X A + 1 , Y , Y 1 , , Y M + 1 ] , [ 1 , 2 , ] ) = 1 A ! M ! S U M ( N , [ 1 , 2 , , Y , 0 , 1 , , ( M Y ) + 1 , X , , X A + 1 ] , [ 1 , 2 , ] ) = Y ! A ! M ! S U M ( N , [ 0 , 1 , , ( M Y ) + 1 , X , , X A + 1 ] , [ Y + 1 , Y + 2 , , M + A ] )

H 1 ( q M Y , K ) Z = M + A Y ( Z ( M Y ) Z q ) [ X + ( M Y ) ] Z q

Y ! A ! M ! H 1 ( q ) = Y ! A ! M ! ( A M + A Y q ) [ M + X Y ] M + A Y q [ Y + 1 ] q g = M Y q = Y ! A ! M ! ( A A g ) ( M + X Y A g ) ( A g ) ! ( M + g M y + g ) ( M y + g ) ! = ( M + g g ) ( M + X Y A g )

( n + X A ) ( n + Y M ) = Y ! A ! M ! q = M Y Z H 1 ( q ) ( N + ( M + A ) Z ( M + A ) Z + q + 1 ) = Y ! A ! M ! g = 0 A H 1 ( g ) ( n + Y M + g )

q.e.d.

M = Y , X = 0 ( n A ) ( n + M M ) = ( M + A A ) ( n + M M + A )

n = 0 N 1 ( n A ) ( n + M M ) = ( M + A A ) ( N + M M + A + 1 ) = ( N + M M ) ( N A ) N A M + A + 1 , record at [3].

2.1.1) is for ( n + A A ) ( n + Y M ) , 2.1.2) is for ( n + X A ) ( n + Y M ) , 0 Y M .

There has no formula for ( n + X A ) ( n + Y M ) , Y > M , X A .

2.1.3) ( n B ) ( A n M B ) = g = 0 M B ( 1 ) M B g ( A M + g g ) ( M g B ) ( n M g ) , n 0

[Proof]

P S = [ 0 , 1 , , ( B 1 ) , A ( M B 1 ) : 1 , , A : 1 ]

H 1 ( q , K ) = { 0 , q < B ( 1 ) q ( M B M q ) [ A ( M B 1 ) ] M q , q B

q.e.d.

2.1.4) [ P + n D : D ] M = q = 0 M D q [ M ] q [ P : D ] M q ( n q )

2.1.5) ( A n M ) = 1 M ! q = 0 M ( 1 ) q q ! ( M q ) [ A M + 1 ] M q ( n q )

[Proof]

P S = [ A M + 1 , , A 1 , A ] : 1 ,

P T = [ 1 , 2 , , M ] ( A n M ) = 1 M ! S U M ( N ) ,

H 1 ( q , K ) = ( M q ) [ A M + 1 ] M q , H 1 ( q , T ) = ( 1 ) q q !

q.e.d.

A = 2 M ( 2 M n M ) = q = 0 M ( 1 ) q ( n q ) ( 2 M q M ) , record at [2]: (3.50).

2.1.6) ( n A ) ( n B ) = q = 0 B ( B q ) ( A + B q B q ) ( n A + B q ) , record at [2]: (6.44).

[Proof]

P S = [ 0 , 1 , , A + 1 , 0 , 1 , , B + 1 ] , P T = [ 1 , 2 , , A + B ] ,

{ X 1 , X 2 , , X A } T H 1 ( q < A ) = 0 , H 1 ( q A ) = q ! ( B q A ) [ A ] A + B q

( n A ) ( n B ) = 1 A ! B ! q = A A + B q ! ( B q A ) [ A ] A + B q ( n q )

q : = A + q 1 A ! B ! q = 0 B ( A + q ) ! ( B q ) [ A ] B q ( n A + q ) q : = B q conclusion

q.e.d.

2.2. P ≥ 0, PT = [P + 1, P + 2, …, P + M], PS = [P + 2, P + 4, …, P + 2M]

H 2 ( q , K ) = S U M ( q + 1 , [ 1 , 3 , , 2 ( M q ) 1 ] , [ 1 , 3 , , 2 ( M q ) 1 ] ) = ( 2 ( M q ) 1 ) ! ! ( 2 M q q )

S U M ( N ) = 1 P ! S U M ( N , [ 1 , 2 , , P , P S ] , [ 1 , 2 , , P , P + 1 , , P + M ] ) = n = 0 N 1 ( n + P P ) ( P + 2 + n ) ( P + 4 + n ) ( P + 2 M + n ) = q = 0 M ( 2 [ M q ] 1 ) ! ! ( 2 M q q ) [ P + 1 ] q ( N + P + q P + q + 1 )

2.2.1)

( n + P P ) i = 1 M ( P + 2 i + n ) = q = 0 M ( 2 [ M q ] 1 ) ! ! ( 2 M q q ) [ P + 1 ] q ( n + P + q P + q )

2.2.2) i = 1 M ( 2 i + n ) = q = 0 M ( 2 [ M q ] 1 ) ! ! ( 2 M q q ) q ! ( n + q q )

S U M ( N , [ 1 , 3 , , 2 M 1 ] , [ 1 , 2 , , M ] ) = S U M ( N , [ 3 , , 2 M 1 ] , [ 2 , , M ] )

Change M to M − 1 and q! to (q + 1)!à

2.2.3) i = 1 M ( 2 i + n 1 ) = q = 0 M 1 ( 2 [ M q ] 3 ) ! ! ( 2 M q 2 q ) ( q + 1 ) ! ( n + 1 + q q + 1 )

2.3. PT = [1, 3, …, 2M − 1], PS = [P + D, P + 3D, …, P + TMD]:D

H 2 ( q , K ) = [ P : D ] M q

H 2 ( q , T ) = D q S U M ( M q + 1 , [ 1 , 3 , , 2 q 1 ] , [ 1 , 3 , , 2 q 1 ] )

2.3.1) S U M ( N ) = q = 0 M [ P : D ] M q D q ( 2 q 1 ) ! ! ( M + q 2 q ) ( N + M 1 + q M + q )

P = 1 , D = 1 P S = [ 2 , 4 , , 2 M ]

2.3.2) S U M ( N ) = n M = 0 N 1 ( 2 M + n M ) n 2 = 0 n 3 ( 4 + n 2 ) n 1 = 0 n 2 ( 2 + n 1 ) = q = 0 M ( M + q ) ! ( q ) ! 2 q ( N + M 1 + q M + q ) = q = 0 M ( N 1 + q q ) [ N + q ] M 2 q

(*) N = 1 2 M M ! = q = 0 M ( M + q ) ! ( q ) ! 2 q = q = 0 M [ 1 + q ] M 2 q

This can also be obtained from 2.2.2).

2.4. PT = [1, 3, …, 2M − 1], PS = [P, P + D, …, P + (M − 1)D]:2D

2.4.1) S U M ( N ) = ( M + N 1 M ) [ P + ( M + N 2 ) D : D ] M

[Proof]

H 1 ( q , K , [ P , P + D , , P + ( M 1 ) D ] : D , [ 1 , 2 , , M ] ) = S U M ( q + 1 , [ P , P + D , , P + ( M 1 q ) D ] : 2 D , [ 1 , 3 , , 2 ( M q ) 1 ] ) = H 1 ( q , K , [ P + ( M 1 ) D , , P + D , P ] : D , [ 1 , 2 , , M ] ) = ( M q ) H 1 ( q , K , ) 3.2 ) ( M q ) [ P + ( M 1 ) D : D ] M q

S U M ( q + 1 , [ P , P + D , , P + ( M 1 q ) D ] : 2 D , [ 1 , 3 , , 2 ( M q ) 1 ] ) = ( M q ) [ P + ( M 1 ) D : D ] M q M : = M q

S U M ( q + 1 , [ P , P + D , , P + ( M 1 ) D ] : 2 D , [ 1 , 3 , , 2 M 1 ] ) = ( M + q q ) [ P + ( M + q 1 ) D : D ] M N : = q + 1 ( M + N 1 M ) [ P + ( M + N 2 ) D : D ] M

q.e.d.

2.4.2) S U M ( N , [ P + 1 , P + 2 , ] : 2 , [ 1 , 3 , , 2 M 1 ] ) = M ! ( N + M 1 M ) ( N + M + P 1 M )

2.4.3) S U M ( N , [ 1 , 2 , , M ] : 2 , [ 1 , 3 , , 2 M 1 ] ) = M ! ( N + M 1 M ) 2

M = 1 1 + 3 + + ( 2 N 1 ) = N 2

M = 2 S U M ( N , [ 1 , 2 ] : 2 , [ 1 , 3 ] ) = n = 0 N 1 ( 2 + 2 n ) S U M ( n + 1 , [ 1 ] : 2 , [ 1 ] ) = n = 0 N 1 ( 2 + 2 n ) ( 1 + n ) 2 = 2 n = 0 N 1 ( 1 + n ) 3 n = 1 N n 3 = ( N + 1 2 ) 2

2.4.2) and 2.1.1)à

H ( q , [ P + 1 , P + 2 , ] : 2 , [ 1 , 3 , , 2 M 1 ] ) = M ! H ( q , [ P + 1 , P + 2 , ] , [ M + 1 , M + 2 , , 2 M ] )

2.4.5) ( n A ) ( n B ) = q = 0 B ( A B q ) ( B q ) ( n + B q A + B ) , record at [2]: (6.45).

[Proof]

P S = [ 0 , 1 , , A + 1 , 0 , 1 , , B + 1 ] , P T = [ 1 , 2 , , A + B ] , use Form3

{ X 1 , X 2 , , X A } T H 3 ( q < A ) = 0 , q A i A X i T = A !

i > A X i T = S U M ( A + B + 1 q , [ 1 , 2 , , q A ] : 2 , [ 1 , 3 , , 2 ( q A ) 1 ] ) = ( q A ) ! ( A + B q + q A q A ) 2

H 3 ( q A ) = A ! ( q A ) ! ( B q A ) ( B q A ) [ A ] A + B q

( n A ) ( n B ) = 1 A ! B ! q = A A + B H 3 ( q ) ( n + A + B q A + B )

q : = A + q 1 A ! B ! q = 0 B A ! q ! ( B q ) 2 [ A ] B q ( n + B q A + B )

q.e.d.

2.5. P ≥ 0, PT = [1, 3, …, 2M − 1], PS = [P + 2, P + 4, …, P + 2M]:3

[1] has obtained: H 1 ( q ) = x = q M H 2 ( x ) ( x q ) = x = 0 q H 3 ( x ) ( M x M q )

2.5.1) S U M ( N ) = q = 0 M ( P + N 1 + q q ) ( N + M 1 q M q ) [ M + N q ] M 2 M q

[Proof]

For S U M ( N , [ P + 2 , P + 4 , , P + 2 M ] , [ P + 1 , P + 2 , , P + M ] )

H 1 ( q , T ) = [ P + 1 ] q

H 1 ( q , K ) = S U M ( q + 1 , [ P + 2 , P + 4 , ] : 3 , [ 1 , 3 , , 2 ( M q ) 1 ] )

H 1 ( q ) = x = q M H 2 ( x ) ( x q ) 2.3.1 ) , D = 1 x = q M ( 2 [ M x ] 1 ) ! ! ( 2 M x x ) [ P + 1 ] x ( x q )

S U M ( q + 1 , [ P + 2 , P + 4 , , P + 2 ( M q ) ] : 3 , [ 1 , 3 , , 2 ( M q ) 1 ] ) = x = q M ( 2 M x ) ! ( m x ) ! 2 M x [ P + 1 ] x q ! ( x q ) ! [ P + 1 ] q = x = q M ( 2 M x ) ! ( m x ) ! 2 M x ( P + x ) ! q ! ( x q ) ! ( P + q ) ! x : = q + x x = 0 M q ( 2 M q x ) ! ( M q x ) ! 2 M q x ( P + x + q ) ! q ! x ! ( P + q ) !

S U M ( q + 1 , [ P + 2 , P + 4 , , P + 2 M ] : 3 , [ 1 , 3 , , 2 M 1 ] ) = x = 0 M ( 2 M + q x ) ! ( M x ) ! 2 M x ( P + x + q ) ! q ! x ! ( P + q ) ! conclusion

q.e.d.

S U M ( N , [ 2 , 4 , , 2 M ] : 3 , [ 1 , 3 , , 2 M 1 ] ) = x = 0 M ( 2 M + N 1 x ) ! ( M x ) ! 2 M x ( P + x + N 1 ) ! x ! ( N 1 ) ! ( P + N 1 ) !

2.5.2)

S U M ( N , [ 2 , 4 , , 2 M ] : 3 , [ 1 , 3 , ] ) = q = 0 M ( N 1 + q q ) ( N + M 1 q M q ) [ M + N q ] M 2 M q

2.5.3)

S U M ( N , [ 3 , 5 , , 2 M 1 ] : 3 , [ 3 , 5 , , 2 M 1 ] ) = q = 0 M 1 ( N + q q ) ( N + M 2 q M q 1 ) [ M + N q 1 ] M 1 2 M q 1

2.6. Summary

3. r-Flod Sum

Define ( r ) N f ( k ) = k r = 1 N k 2 = 1 k 3 k = 1 k 2 f ( k ) = k r = 0 N 1 k 2 = 0 k 3 k = 0 k 2 f ( k + 1 )

( r ) N 1 = S U M ( N , [ 1 , 1 , , 1 ] : 0 , [ 1 , 3 , , 2 r 1 ] ) H 1 ( q > 0 ) = 0 ( N + r 1 r )

3.1) ( r ) N S U M ( k + 1 , P S , P T ) = q = 0 M H 1 ( q , P S , P T ) ( N + T M M + r 1 T M M + r + q )

[Proof]

P S 1 = [ P S , 1 : 0 , 1 : 0 , ] , P T 1 = [ P T , T M + 2 , T M + 4 , , T M + 2 ( r 1 ) ]

( r ) N S U M ( k + 1 , P S , P T ) = S U M ( N , P S 1 , P T 1 ) = q = 0 M + r 1 H 1 ( q , P S 1 , P T 1 ) ( N + T M M + r 1 T M M + r + q )

In H 1 ( q , P S 1 , P T 1 ) , i > M , { ( T i X K 1 ) D i = 0 ; X i = T i K i + X T 1 D i = 1 ; X i = K i

H 1 ( q > M , P S 1 , P T 1 ) = 0 , H 1 ( q M , P S 1 , P T 1 ) = H 1 ( q , P S , P T )

q.e.d.

Another way: understand the definition of p and use three Forms.

3.2) ( r ) N S U M ( k + 1 , P S , P T ) = ( r 1 ) S U M ( N , P S , P T )

( r ) N K 2 = ( r ) N S U M ( k + 1 , [ 1 , 1 ] , [ 1 , 2 ] ) = S U M ( N , [ 1 , 1 , 1 : 0 , 1 : 0 , ] , [ 1 , 2 , 4 , 6 , , 2 r ] ) = 2 ( N + r 1 r + 2 ) + 3 ( N + r 1 r + 1 ) + ( N + r 1 r ) = 2 ( N + r r + 2 ) + ( N + r r + 1 )

= 2 ( N + r ) ! ( N 1 ) ( r + 2 ) ! ( N 1 ) ! + ( N + r ) ! ( r + 2 ) ( r + 2 ) ! ( N 1 ) ! = ( N + r ) ! ( 2 N + r ) ( r + 2 ) ! ( N 1 ) ! record at [2].

( r ) N K 3 = ( r 1 ) S U M ( N , [ 1 , 1 ] , [ 2 , 3 ] ) = ( r 1 ) [ 6 ( N + 1 4 ) + 6 ( N + 1 3 ) + ( N + 1 2 ) ]

= 6 ( N + r r + 3 ) + 6 ( N + r r + 2 ) + ( N + r r + 1 )

= ( 6 N 2 + r ( 6 N + r 1 ) ) ( N + r ) ! ( r + 3 ) ! ( N 1 ) ! record at [2].

3.3) k r = 0 N 1 k 2 = 0 k 3 k = 0 k 2 ( k i p ) = ( p + i 1 p ) ( N + r 1 r + p ) p = 1 i ( N + r 1 r + 1 )

[Proof]

k r = 0 N 1 k 2 = 0 k 3 k = 0 k 2 ( k i p ) = k r = 0 N 1 k i = 0 k i + 1 ( k i p ) ( k i + i 1 i 1 )

P S 1 = [ 1 , 2 , , i 1 , 0 , 1 , 2 , , p + 1 , 1 : 0 , 1 : 0 , , 1 : 0 ]

P T 1 = [ 1 , 2 , , i 1 , i , i + 1 , , i + p 1 , i + p + 1 , i + p + 3 , , i + p + 2 ( r i ) 1 ] = 1 p ! ( i 1 ) ! S U M ( N , P S 1 , P T 1 )

P S = [ 0 , 1 , 2 , , p + 1 , 1 : 0 , 1 : 0 , , 1 : 0 ]

P T = [ i , i + 1 , i + 2 , , i + p 1 , i + p + 1 , i + p + 3 , , i + p + 2 ( r i ) 1 ] = 1 p ! S U M ( N , P S , P T ) H 1 ( q p ) = 0 , { X 1 , X 2 , , X P } T ( p + i 1 p ) ( N + r 1 r + p )

q.e.d.

This is the conclusion of [4] and the proof is simpler.

4. n = 0 N 1 P 1 S U M ( n + 1 , [ K 1 ] , [ T 1 ] ) P 2 S U M ( n + 1 , [ K 2 ] , [ T 2 ] )

4.1) P T , P S U M ( N , [ K : D ] , [ T ] ) , D 0

= T D ( T + 1 P ) ! ( n + 1 ) ( n + 2 ) ( n + T P ) ( n + T + 1 P T D K )

[Proof]

P S U M ( N , [ K : D ] , [ T ] ) = P [ K ( N + T 1 T ) + T D ( N + T 1 T + 1 ) ] = [ K ( n + T P T P ) + T D ( n + T P T + 1 P ) ] = 1 ( T P ) ! ( n + 1 ) ( n + 2 ) ( n + T P ) ( T D T + 1 P n + K ) = T D ( T + 1 P ) ! ( n + 1 ) ( n + 2 ) ( n + T P ) ( n + T + 1 P T D K )

q.e.d.

This leads to:

4.2) P 1 T 1 , P 2 T 2 , D 1 0 , D 2 0

P S = [ 1 , 2 , , T 1 P 1 , K 1 ( T 1 + 1 P 1 ) T 1 D 1 , 1 , 2 , , T 2 P 2 , K 2 ( T 2 + 1 P 2 ) T 2 D 2 ]

P T = [ 1 , 2 , 3 , , T 1 + T 2 + 2 P 1 P 2 ]

n = 0 N 1 P 1 S U M ( n + 1 , [ K 1 : D 1 ] , [ T 1 ] ) P 2 S U M ( n + 1 , [ K 2 : D 2 ] , [ T 2 ] ) = T 1 T 2 D 1 D 2 ( T 1 + 1 P 1 ) ! ( T 2 + 1 P 2 ) ! S U M ( N , P S , P T )

4.3)

n = 0 N 1 S U M ( n + 1 , [ K 1 ] , [ T 1 ] ) S U M ( n + 1 , [ K 2 ] , [ T 2 ] ) = n = 0 N 1 [ K 1 ( n + T 1 1 T 1 1 ) + T 1 ( n + T 1 1 T 1 ) ] [ K 2 ( n + T 2 1 T 2 1 ) + T 2 ( n + T 2 1 T 2 ) ] = 1 ( T 1 1 ) ! 1 ( T 2 1 ) ! S U M ( N , [ 1 , 2 , , T 1 1 , K 1 , 1 , 2 , , T 2 1 , K 2 ] , [ 1 , 2 , , T 1 + T 2 ] )

T 1 = T 2 = 1 n = 0 N 1 ( n + K 1 ) ( n + K 2 ) = S U M ( N , [ K 1 , K 2 ] , [ 1 , 2 ] )

4.4)

n = 0 N 1 S U M ( n + 1 , [ K 1 ] , [ T 1 ] ) S U M ( n + 1 , [ K 2 ] , [ T 2 ] ) = T 1 T 2 ( T 1 + 1 ) ! ( T 2 + 1 ) ! S U M ( N , [ 1 , , T 1 , K 1 ( T 1 + 1 ) T 1 , 1 , , T 2 , K 2 ( T 2 + 1 ) T 2 ] , [ 1 , 2 , , T 1 + T 2 + 2 ] )

The following calculation problems have been solved:

n = 0 N 1 P 1 S U M ( n + 1 , [ K 1 : D 1 ] , [ T 1 ] ) P 2 ( ) P 3 ( ) P 4 ( )

n = 0 N 1 ( K + n ) = S U M ( N , [ K ] , [ 1 ] ) = K + n

n , n 1 , n 2 = 0 , n 1 n 2 = n N 1 ( K + n 1 + n 2 ) n 1 [ 0 , n ] , countofitems = n + 1 = ( K + n 2 ) ( n + 1 1 ) + n 1 = 0 n n 1 = ( K + n ) ( n + 1 1 ) + ( n + 1 2 ) = K ( n + 1 1 ) + 3 ( n + 1 2 ) = 2 S U M ( N , [ K ] , [ 3 ] )

( K + n 1 + + n M ) Repeatableselection M 1 in [ 0 , n ] , countofitems = ( n + 1 + M 1 1 M 1 ) = ( K + n ) ( n + M 1 M 1 ) + n M 1 = 0 n n 1 = 0 n 2 ( n 1 + n 2 + + n M 1 )

3.3 ) , P = 1 ( K + n ) ( n + M 1 M 1 ) + i = 1 M 1 i ( n + M 1 M + 1 ) = ( K + n ) ( n + M 1 M 1 ) + ( M 2 ) ( n + M 1 M )

= ( K + n ) ( n + M 1 M 1 ) + ( M 2 ) ( n + M 1 M ) = K ( n + M 1 M 1 ) + n ( n + M 1 M 1 ) + ( M 2 ) ( n + M 1 M ) = K ( n + M 1 M 1 ) + ( M + ( M 2 ) ) ( n + M 1 M )

= K ( n + M 1 M 1 ) + ( M + 1 2 ) ( n + M 1 M )

= K ( N + M 2 M 1 ) + ( M + 1 2 ) ( N + M 2 M ) = ( M 2 ) + 1 S U M ( N , [ K ] , [ ( M + 1 2 ) ] )

4.5) n 1 , n 2 , , n M = 0 , n 1 n 2 n M N 1 ( K + n 1 + + n M ) = ( M 2 ) S U M ( N , [ K ] , [ ( M + 1 2 ) ] )

4.6) n 1 , n 2 , , n M = 0 , n 1 n 2 n M N 1 ( K + n 1 d 1 + + n M d M ) = ( M 2 ) S U M ( N , [ K : ( d 1 + 2 d 2 + + M d M ) ( M + 1 2 ) 1 ] , [ ( M + 1 2 ) ] )

Use 4.1), the following calculation problems have been solved:

0 N 1 P 1 ( ( K + n 1 d 1 , 1 + + n M 1 d 1 , M ) ) P 2 ( ( K + n 1 d 2 , 1 + ) ) P 3 ( )

Investigation

n 1 , n 2 , , n M = 0 , n 1 n 2 n M N 1 ( K 1 + n 1 d 1 , 1 + + n M d M , 1 ) ( K 2 + n 1 d 1 , 2 + + n M d M , 2 )

n = 0 N 1 ( K 1 + n d 1 , 1 ) ( K 2 + n d 1 , 2 ) = S U M ( N , [ K 1 : d 1 , 1 , K 2 : d 1 , 2 ] , [ 1 , 2 ] ) = 2 d 1 , 1 d 12 ( N 3 ) + ( K 1 d 1 , 2 + K 2 d 1 , 1 + d 1 , 1 d 1 , 2 ) ( N 2 ) + K 1 K 2 ( N 1 )

Suppose

F ( N , M ) = n 1 , n 2 , , n M = 0 , n 1 n 2 n M N 1 ( K 1 + n 1 d 1 , 1 + ) ( K 2 + n 1 d 1 , 2 + ) = A ( M ) ( N + M 1 M + 2 ) + B ( M ) ( N + M 1 M + 1 ) + K 1 K 2 ( N + M 1 M )

Let D i = d 1 , i + 2 d 2 , i + + M d M , i , D i M = d 1 , i + 2 d 2 , i + + ( M 1 ) d M 1 , i

F ( N , M + 1 ) = n M + 1 = 0 N 1 F ( N , M ) + n M + 1 = 0 N 1 n M + 1 d M + 1 , 2 n 1 , n 2 , , n M = 0 , n 1 n 2 n M N 1 ( K 1 + n 1 d 1 , 1 + ) + n M + 1 = 0 N 1 n M + 1 d M + 1 , 1 n 1 , n 2 , , n M = 0 , n 1 n 2 n M N 1 ( K 2 + n 1 d 2 , 1 + ) + n M + 1 = 0 N 1 n M + 1 d M + 1 , 1 d M + 1 , 2 n 1 , n 2 , , n M = 0 , n 1 n 2 n M N 1 1

= A ( M ) ( N + M ( M + 1 ) + 2 ) + B ( M ) ( N + M ( M + 1 ) + 1 ) + K 1 K 2 ( N + M M + 1 ) + S U M ( N , [ K 1 : D 1 ( M + 1 2 ) 1 , 0 : d M + 1 , 2 ] [ ( M + 1 2 ) , ( M + 1 2 ) + 2 ( M 2 ) ] ) + S U M ( N , [ K 2 : D 2 ( M + 1 2 ) 1 , 0 : d M + 1 , 1 ] [ ( M + 1 2 ) , M + 2 ] ) + S U M ( N , [ 1 : 0 , 1 : 0 , , 1 : 0 , 0 : d M + 1 , 1 , 0 : d M + 1 , 2 ] [ 1 , 3 , , 2 M 1 , 2 M ] )

= A ( M ) ( N + M ( M + 1 ) + 2 ) + B ( M ) ( N + M ( M + 1 ) + 1 ) + K 1 K 2 ( N + M M + 1 ) + D 1 ( M + 2 ) d M + 1 , 2 ( N + M ( M + 1 ) + 2 ) + { K 1 ( M + 1 ) d M + 1 , 2 + D 1 d M + 1 , 2 } ( N + M ( M + 1 ) + 1 )

+ D 2 ( M + 2 ) d M + 1 , 1 ( N + M ( M + 1 ) + 2 ) + { K 2 ( M + 1 ) M + 1 , 1 + D 2 d M + 1 , 1 } ( N + M ( M + 1 ) + 1 ) + ( M + 1 ) ( M + 2 ) d M + 1 , 1 d M + 1 , 2 ( N + M ( M + 1 ) + 2 ) + ( M + 1 ) d M + 1 , 1 d M + 1 , 2 ( N + M ( M + 1 ) + 1 )

A ( 0 ) = 0 , B ( 0 ) = 0

A ( M ) = A ( M 1 ) + M ( M + 1 ) d M , 1 d M , 2 + ( M + 1 ) ( D i M d M , 2 + D i M d M , 1 ) = A ( M 1 ) + ( M + 1 ) ( D 1 d M , 2 + D 2 d M , 1 M d M , 1 d M , 2 )

B ( M ) = B ( M 1 ) + M ( d M , 1 d M , 2 + K 1 d M , 2 + K 2 d M , 1 ) + D i M d M , 2 + D i M d M , 1 = B ( M 1 ) + M ( K 1 d M , 2 + K 2 d M , 1 d M , 1 d M , 2 ) + D 1 d M , 2 + D 2 d M , 1

4.7) F ( N , M ) = A ( M ) ( N + M 1 M + 2 ) + B ( M ) ( N + M 1 M + 1 ) + K 1 K 2 ( N + M 1 M )

d i , 1 = 1 , d i , 2 = 1

A ( M ) = n = 0 M { n ( n + 1 ) + 2 ( n + 1 ) ( n 2 ) } = 2 ( M + 2 3 ) + 6 ( M + 2 4 )

B ( M ) = n = 0 M { n ( K 1 + K 2 + 1 ) + 2 ( n 2 ) } = ( M + 1 2 ) ( K 1 + K 2 + 1 ) + 2 ( M + 1 3 )

5. Formal Calculation of Gaussian Coefficients

Define: G M N = [ N M ] q = ( q N 1 ) ( q N 1 1 ) ( q N M + 1 1 ) ( q M 1 ) ( q M 1 1 ) ( q 1 )

G 0 N = 1 , G M < 0 or M > N N = 0 , G M N = G N M N , G M N = q M G M N 1 + G M 1 N 1

5.1) G M N = G M N 1 + q N M G M 1 N 1

5.2) n = 0 N 1 q n G M n + M = G M + 1 N + M

5.3) n = 0 N 1 q n G M n + K = q M K G M + 1 N + K ; n = 0 N 1 q n G M n = q M G M + 1 N

5.4) n = 0 N 1 q n G 1 n G M n + K , M > 0 , M K

= q 2 ( M K ) + 1 G 1 M + 1 G M + 2 N + K + q M K G 1 M K G M + 1 N + K ,

= q M 2 K 1 G 1 M + 1 G M + 2 N + K + 1 + q M K ( G 1 M K q K 1 G 1 M + 1 ) G M + 1 N + K ,

= ( q 2 ( M K ) + 1 G 1 M + 1 q 2 M K + 2 G 1 M K ) G M + 2 N + K + q M K G 1 M K G M + 2 N + K + 1 .

[1] has obtained the formal formula of n = 0 N 1 q n i = 1 M ( K i + D i q n ) , but it cannot be generalized to n M = 0 N 1 n 2 = 0 n 3 n 1 = 0 n 2 .

Notice K i + D i n = K i + D i ( n 1 ) , this inspired use G 1 n instead of q n .

The difficulty lies in the definition of q P .

Recursive define operator q P :

q 0 f ( N ) = f ( N ) , n = 0 N 1 q n q 1 f ( n + 1 ) = f ( N ) , n = 0 N 1 q n f ( n + 1 ) = q 1 f ( N )

S U M q ( N , [ K 1 : D 1 ] , [ T 1 = 1 ] ) = n = 0 N 1 q n ( D 1 G 1 n + K 1 )

S U M q ( N , [ K 1 : D 1 , K 2 : D 2 ] , [ T 1 = 1 , T 2 = T 1 + 2 P ] ) = n = 0 N 1 q n P S U M q ( n + 1 , [ K 1 : D 1 ] , [ 1 ] ) ( D 2 G 2 n + K 2 )

Recursive definie S U M q ( N , [ K 1 : D 1 , K 2 : D 2 , ] , P T ) .

5.5) 1 S U M q ( N , [ K 1 : D 1 , K 2 : D 2 , ] , [ 1 , 2 , , M ] ) = i = 1 M ( D i G 1 n + K i )

5.6) S U M q ( N , [ K 1 : D 1 , K 2 : D 2 , ] , [ 1 , 3 , , 2 M 1 ] ) = n M = 0 N 1 n 2 = 0 n 3 q n 2 ( D 2 G 1 n 2 + K 2 ) n 1 = 0 n 2 q n 1 ( D 1 G 1 n 1 + K 1 )

The Form: ( T 1 + K 1 ) ( T 2 + K 2 ) ( T M + K M ) = i = 1 M X i

5.7) H q ( g ) = H q ( P S , P T , g ) = X ( T ) = g i = 1 M B i , S U M q ( N ) =

{ Form 1 g = 0 M H 1 q ( g ) G N 1 g N + T M M = g = 0 M H 1 q ( g ) G T M M + 1 + g N + T M M Form 2 g = 0 M H 2 q ( g ) G N 1 N + T M M + g = g = 0 M H 2 q ( g ) G T M M + 1 + g N + T M M + g Form 3 g = 0 M H 3 q ( g ) G N 1 g N + T M g = g = 0 M H 3 q ( g ) G T M + 1 N + T M + g

{ B i Form 1 { q { T i T i 1 } X T 1 + 1 G 1 T i X K 1 D i ; X i = T i q ( T i T i 1 1 ) X T 1 ( K i + G 1 X T 1 D i ) ; X i = K i B i Form 2 { q ( T i X K 1 ) G 1 T i X K 1 D i ; X i = T i K i q ( T i X K 1 ) G 1 T i X K 1 D i ; X i = K i B i Form 3 { q ( T i T i 1 1 ) X T 1 + 1 { ( q X T 1 G 1 T i q T i G 1 X T 1 ) D i K i q T i } ; X i = T i q ( T i T i 1 1 ) X T 1 ( K i + G 1 X T 1 D i ) ; X i = K i

[Proof]

S U M q ( N , [ K 1 : D 1 ] , [ 1 ] ) Form 1 q 1 D 1 G 2 N + K 1 G 1 N Form 2 q 1 D 1 G 2 N + 1 + ( K 1 q 1 D 1 ) G 1 N Form 3 ( q 1 D 1 K 1 q 2 ) G 2 N + K 1 G 2 N + 1

If f ( N ) = A i G M i + 1 N + M i , q P f ( N ) = A i G M i + 1 P N + M i P , Form2 is simplest.

Assume S U M q ( N , P S , P T ) = g = 0 M H 2 q ( g ) G T M M + 1 + g N + T M M + g , X = T M M + 1 P

q P S U M q ( n + 1 , P S , P T ) = g = 0 M H 2 q ( g ) G T M M + 1 + g P n + 1 + T M M + g P = g = 0 M H 2 q ( g ) G X + g n + X + g

S U M q ( N , P S A , P T A ) = n = 0 N 1 q n g = 0 M H 2 q ( g ) G X + g n + X + g ( D M + 1 G 1 n + K M + 1 ) = g = 0 M D M + 1 q X g 1 G 1 X + g + 1 H 2 q ( g ) G X + g + 2 N + X + g + 1 + g = 0 M ( K M + 1 q X g 1 G 1 X + g + 1 D M + 1 ) H 2 q ( g ) G X + g + 1 N + X + g

= g = 0 M D M + 1 q ( T M + 1 [ M g ] ) G 1 T M + 1 [ M g ] H 2 q ( g ) G T M + 1 ( M + 1 ) + g + 2 N + T M + 1 ( M + 1 ) + g + 1 + g = 0 M ( K M + 1 q ( T M + 1 [ M g ] ) G 1 T M + 1 [ M g ] D M + 1 ) H 2 q ( g ) G T M + 1 ( M + 1 ) + g + 1 N + T M + 1 ( M + 1 ) + g = g = 0 M + 1 H 2 q ( P S A , P T A , g ) G N 1 N + T M + 1 ( M + 1 ) + g Form 2

If f ( N ) = A i G M i N + K , q P f ( N ) = A i q ( M i K ) P G M i P N + K P

Assume S U M q ( N , P S , P T ) = g = 0 M H 1 q ( g ) G T M M + 1 + g N + T M M , X = T M M + 1 P

q P S U M ( n + 1 ) = g = 0 M q P g H 1 q ( g ) G T M M + 1 + g P n + 1 + T M M P = g = 0 M q P g H 1 q ( g ) G X + g n + X

S U M q ( N , P S A , P T A ) = n = 0 N 1 q n g = 0 M q P g H 1 q ( g ) G X + g n + X × ( D M + 1 G 1 n + K M + 1 ) = g = 0 M q P g D M + 1 q 2 g + 1 G 1 X + g + 1 H 1 q ( g ) G X + g + 2 N + X + g = 0 M q P g ( D M + 1 q g G 1 g + K M + 1 q g ) H 1 q ( g ) G X + g + 1 N + X

= g = 0 M D M + 1 q ( 2 P ) g + 1 G 1 T M + 1 [ M g ] H 1 q ( g ) G N 1 ( g + 1 ) N + T M + 1 ( M + 1 ) + g = 0 M q g ( 1 P ) ( G 1 g D M + 1 + K M + 1 ) H 1 q ( g ) G N 1 g N + T M + 1 ( M + 1 ) = g = 0 M + 1 H 1 q ( P S A , P T A , g ) G N 1 g N + T M + 1 ( M + 1 ) Form 1

If f ( N ) = A i G M N + K i , q P f ( N ) = A i q ( M K i ) P G M P N + K i P Form 3

q.e.d.

From the proof processà

5.8) g = 0 M H 1 q ( g ) G B g A = g = 0 M H 2 q ( g ) G B A + g = g = 0 M H 3 q ( g ) G B g A + M g

When regardless of the actual meaning, Form1 = Form2 = Form3 is still established.

PT’s domain can be extended to .

S U M q ( N , [ K 1 , K 2 ] , [ 1 , 2 ] ) Form 2 q 1 q 2 G 1 1 G 1 2 G 3 N + 2 + q 1 [ ( K 1 q 1 G 1 1 ) + ( K 2 q 2 G 1 2 ) ] G 2 N + 1 + ( K 1 q 1 G 1 1 ) ( K 2 q 1 G 1 1 ) G 1 N

S U M q ( N , [ K 1 , K 2 ] , [ 1 , 3 ] ) Form 2 q 1 q 3 G 1 1 G 1 3 G 4 N + 3 + [ ( K 1 q 1 G 1 1 ) q 2 G 1 2 + q 1 ( K 2 q 3 G 1 3 ) ] G 3 N + 2 + ( K 1 q 1 G 1 1 ) ( K 2 q 2 G 1 2 ) G 2 N + 1

S U M q ( N , [ K 1 , K 2 , K 3 ] , [ 1 , 2 , 3 ] ) Form 2 q 1 q 2 q 3 G 1 1 G 1 2 G 1 3 G 4 N + 3 + q 1 q 2 G 1 1 G 1 2 [ ( K 1 q 1 G 1 1 ) + ( K 2 q 2 G 1 2 ) + ( K 3 q 3 G 1 3 ) ] G 3 N + 2 + q 1 G 1 1 G 2 N + 1 [ ( K 1 q 1 G 1 1 ) ( K 2 q 1 G 1 1 ) + ( K 1 q 1 G 1 1 ) ( K 3 q 2 G 1 2 ) + ( K 2 q 2 G 1 2 ) ( K 3 q 2 G 1 2 ) ] + ( K 1 q 1 G 1 1 ) ( K 2 q 1 G 1 1 ) ( K 3 q 1 G 1 1 ) G 1 N

Form2à

5.9) S U M q ( N , [ q T 1 G 1 T 1 , q T 2 G 1 T 2 , ] , P T ) = i = 1 M q T i G 1 T i G T M + 1 N + T M

5.10) S U M q ( N , [ q L 1 G 1 L 1 , , q L p G 1 L p , P S ] , [ L 1 , , L P , P T ] ) = i = 1 P q L i G 1 L i S U M q ( N , P S , P T ) extendsdomainof T 1 from 1 to

5.11) S U M q ( N , P S , [ T + 1 , T + 2 , , T + M ] ) , K i can exchange order

5.12) q M n = q M q 1 1 g = 0 M q g ( q ( M g ) 1 ) i = 1 g ( q n q i )

[Proof]

q M n = S U M q ( N , [ 1 , 1 , ] : q 1 , [ 1 , 2 , , M ] )

H 2 q ( g , T ) = ( q 1 ) g i = 1 g q i G 1 i

1 q x 1 q x ( q 1 ) ( q 1 ) = 1 q x H 2 q ( g , K ) = q M + g i = 0 ( M g ) 1 q i

q M n = g = 0 M ( q 1 ) g ( i = 1 g q i G 1 i ) q M + g q ( M g ) 1 q 1 1 G g n + g

q.e.d.

S U M ( N , [ K 1 + D 1 : ( q 1 ) D 1 , K 2 + D 2 : ( q 1 ) D 2 , ] , [ 1 , 2 , , M ] ) Form 1

5.13) n = 0 N 1 q n i = 1 M ( K i + D i q n ) = g = 0 M H ( g ) G g + 1 N Conclusion of [1]

H ( g ) = X ( T ) = g i = 1 M { q X T ( q X T 1 ) D i ; X T K i + q X T 1 D i ; X K

5.14) q M n = g = 0 M q g i = 1 g q i ( q n g + i 1 ) G g M

[Proof]

q M n = S U M q ( N , [ 1 , 1 , , ] : q 1 , [ 1 , 2 , , M ] )

H 1 q ( g , T ) = ( q 1 ) g i = 1 g q i G 1 i

1 + q x 1 q 1 ( q 1 ) = q x H 1 q ( g , K ) = q X T 1

In 1916 MacMahon [5] observed that G K M = w Ω ( M , K ) q i n v ( w ) Ω ( M , K ) denotes all permutations of the multiset {0M−K, 1K} that is, all words w = w 1 , , w n with n − k zeroes and k ones, and inv(・) denotes the inversion statistic defined by i n v ( w 1 , , w n ) = | { ( i , j ) : 1 i < j n , w i > w j } | .

So q X T 1 = G M g M , H 1 q ( g ) = g = 0 M ( q 1 ) g ( i = 1 g q i G 1 i ) G M g M

q M n = S U M q ( N ) = g = 0 M ( q 1 ) g ( i = 1 g q i G 1 i ) G M g M q g G g n

q.e.d.

q M n 1 q M 1 = g = 1 M ( q 1 ) g ( i = 1 g q i G 1 i ) G M g M q g G g n q M 1 = g = 1 M ( i = 1 g q i ( q i 1 ) ) G g M q g G g n q M 1

5.15) q M n 1 q M 1 = g = 1 M ( i = 1 g 1 q i ( q i 1 ) ) G M g M 1 G g n Conclusion of [1]

5.16) P 1 < T 1 , P 2 < T 2 , T 1 > 0 , T 2 > 0

P S = [ G 1 1 q 1 , G 1 2 q 2 , , G 1 T 1 P 1 q T 1 P 1 , K 1 G 1 T 1 + 1 P 1 q 1 P 1 G 1 T 1 , G 1 1 q 1 , G 1 2 q 2 , , G 1 T 2 P 2 q T 2 P 2 , K 2 G 1 T 2 + 1 P 2 q 1 P 2 G 1 T 2 ]

P T = [ 1 , 2 , 3 , , T 1 + T 2 + 2 P 1 P 2 ]

n = 0 N 1 q n P 1 S U M q ( n + 1 , [ K 1 ] , [ T 1 ] ) P 2 S U M q ( n + 1 , [ K 2 ] , [ T 2 ] ) = q 1 G 1 1 q 2 G 1 2 q T 1 P 1 G 1 T 1 P 1 q 1 P 1 G 1 T 1 G 1 T 1 P 1 + 1 q 1 G 1 1 q 2 G 1 2 q T 2 P 2 G 1 T 2 P 2 q 1 P 2 G 1 T 2 G 1 T 2 P 2 + 1 S U M ( N , P S , P T )

[Proof]

q n + K 1 q K 1 = q n + K 1 q K 1 q 1 1 q 1 1 = q K ( q n 1 ) + q K 1 G 1 K q 1 1 = q K G 1 K G 1 n + G 1 K G 1 K = q K G 1 K ( G 1 n + G 1 K q K )

P S U M q ( N , [ K ] , [ T ] ) Form 2 q T G 1 T ( n + T + 1 P T + 1 P ) + ( K q T G 1 T ) ( n + T P T P ) = q T G 1 T ( q n + T + 1 P 1 ) ( q n + 1 1 ) ( q T + 1 P 1 ) ( q 1 ) + ( K q T G 1 T ) ( q n + T P 1 ) ( q n + 1 1 ) ( q T P 1 ) ( q 1 )

= ( q n + T P 1 ) ( q n + 1 1 ) ( q T P 1 ) ( q 1 ) ( K q T G 1 T + q T G 1 T q n + T + 1 P 1 q T + 1 P 1 ) = ( q n + T P 1 ) ( q n + 1 1 ) ( q T P 1 ) ( q 1 ) ( K q T G 1 T + q T G 1 T 1 G 1 T + 1 P ( q T + 1 P G 1 n + G 1 T + 1 P ) ) = ( q n + T P 1 ) ( q n + 1 1 ) ( q T P 1 ) ( q 1 ) q 1 P G 1 T G 1 T + 1 P ( K G 1 T + 1 P q 1 P G 1 T + G 1 n )

q.e.d.

5.17) lim q 1 H q ( g ) = H ( g ) , lim q 1 S U M q ( N ) = S U M ( N )

[1] has a conclusion:

H 1 ( q ) = x = q M H 2 ( x ) ( x q ) = x = 0 q H 3 ( x ) ( M x M q ) H 2 ( q ) = x = q M ( 1 ) x + q H 1 ( x ) ( x q ) H 3 ( q ) = x = 0 q ( 1 ) x + q H 1 ( x ) ( M x M q )

Generally, Hq(g) has no such attribute; things get complicated.

When P T = [ 1 , 2 , , M ] , the situation is relatively simple.

5.18) P T = [ 1 , 2 , , M ] , H 1 q ( g ) = x = g M H 2 q ( x ) G g x q 2 ( g + 1 2 )

[Proof]

This is to prove: H 1 q ( g ) q ( g + 1 2 ) = ( x = g M H 2 q ( x ) G g x ) q ( g + 1 2 )

H 1 q ( g ) ( i = 1 g q { T i T i 1 } X T 1 + 1 ) 1 = ( x = g M H 2 q ( x ) G g x ) ( i = 1 g q ( T i X K 1 ) ) 1

P S 1 = [ P S , K M + 1 : D M + 1 ] , P T 1 = [ P T , M + 1 ]

Suppose it is true at M, H 1 q ( g ) = ( x = g M ) = ( x = 0 M )

H 1 q ( P S 1 , P T 1 , g ) = q X T 1 + 1 G 1 T M + 1 X K 1 , choice T D M + 1 H 1 q ( g 1 ) + ( K M + 1 + G 1 X T 1 , choice K D M + 1 ) H 1 q ( g ) = q g G 1 g D M + 1 H 1 q ( g 1 ) + ( K M + 1 + G 1 g D M + 1 ) H 1 q ( g )

= q g G 1 g D M + 1 x = 0 M H 2 q ( x ) { G g 1 x = G g x + 1 q g G g x } q 2 ( g 2 ) = 2 ( g + 1 2 ) 2 g + ( K M + 1 + G 1 g D M + 1 ) x = 0 M H 2 q ( x ) G g x q 2 ( g + 1 2 ) = q g G 1 g D M + 1 x = 0 M H 2 q ( x ) G g x + 1 q 2 ( g + 1 2 ) + K M + 1 x = 0 M H 2 q ( x ) G g x q 2 ( g + 1 2 )

q 2 ( g + 1 2 ) x = 0 M + 1 H 2 q ( P S 1 , P T 1 , x ) G g x = q 2 ( g + 1 2 ) { x = 1 M + 1 H 2 q ( x 1 ) q x G 1 x D M + 1 G g x + x = 0 M H 2 q ( x ) ( K M + 1 q x 1 G 1 x + 1 D M + 1 ) G g x }

= q 2 ( g + 1 2 ) { x = 0 M H 2 q ( x ) q x 1 G 1 x + 1 D M + 1 G g x + 1 + x = 0 M H 2 q ( x ) ( K M + 1 q x 1 G 1 x + 1 D M + 1 ) G g x }

H 1 q ( P S 1 , P T 1 , g ) q 2 ( g + 1 2 ) x = 0 M + 1 H 2 q ( P S 1 , P T 1 , x ) G g x = q 2 ( g + 1 2 ) D M + 1 x = 0 M H 2 ( x ) { ( q g G 1 g q x 1 G 1 x + 1 ) G g x + 1 + q x 1 G 1 x + 1 G g x } { .. } = 0 = 0

q.e.d.

6. Multiparameter Forms

(1.1) and (5.7) Use the Form: ( T 1 + K 1 ) ( T 2 + K 2 ) ( T M + K M )

The form has T and K parameters, and more parameters will be used in this section. This section moves the Di to PT.

P S = [ K 1 , K 2 , , K M ] , P S A = [ P S , K M + 1 ]

P T 1 = [ T 1 , 1 : D 1 , 1 , T 2 , 1 : D 2 , 1 , , T M , 1 : D M , 1 ] = [ T 1 : D 1 , 1 , T 2 : D 2 , 1 , , T M : D M , 1 ]

P T 2 = [ T 1 , 2 : D 1 , 2 , T 2 , 2 : D 2 , 2 , , T M , 2 : D M , 2 ] = [ T 1 : D 1 , 2 , T 2 : D 1 , 2 , , T M : D M , 2 ]

P T A 1 = [ P T 1 , T M + 1 = T M + 2 p : D M + 1 , 1 ] , P T A 2 = [ P T 2 , T M + 1 : D M + 1 , 2 ]

Define

S U M ( N , [ K 1 ] , [ T 1 , 1 = 1 : D 1 , 1 ] , [ T 1 , 2 = 1 : D 1 , 2 ] ) = n = 0 N 1 ( K 1 + n D 1 , 1 + ( n 2 ) D 1 , 2 )

S U M ( N ) = S U M ( N , P S , P T A 1 , P T A 2 ) = n = 0 N 1 ( K M + 1 + n × D M + 1 , 1 + ( n 2 ) × D M + 1 , 1 ) × p S U M ( n + 1 )

( K 1 + T 1 , 1 + T 1 , 2 ) ( K 2 + T 2 , 1 + T 2 , 2 ) ( K M + T M , 1 + T M , 2 ) = i = 1 M X i

X ( P T 1 ) , X ( P T 2 ) = countof X P T 1 , P T 2 ; X ( P T ) = X ( P T 1 ) + 2 X ( P T 2 )

X P T 1 , X P T 2 = countof { X 1 , X 2 , , X i } P T 1 , P T 2 ; X P T = X P T 1 + 2 X P T 2

6.1) H ( q ) = X i with X ( P T ) = q i = 1 M B i , S U M ( N ) Form 1 q = 0 2 M H 1 ( q ) ( N + T M M T M M + 1 + q )

Form 1 B i = { ( X P T 0 ) K i + ( X P T 1 ) D i , 1 + ( X P T 2 ) D i , 2 ; X i = K i ( T i + X P T i 1 ) D i , 1 + ( T i + X P T i 1 ) ( X P T 1 1 ) D i , 2 ; X i = P T i , 1 ( T i + X P T i 2 ) D i , 2 ; X i = P T i , 2

[Proof]

(*) n = 0 N 1 n ( n + K M ) = ( M + 1 ) ( N + K M + 2 ) + ( M K ) ( N + K M + 1 )

(**) n = 0 N 1 ( n 2 ) ( n + K M ) = ( M + 2 2 ) ( N + K M + 3 ) + ( M k ) ( M + 1 ) ( N + K M + 2 ) + ( M K 2 ) ( N + K M + 1 )

Still use induction, Let Y = 1 + T M M P = T M + 1 ( M + 1 )

S U M ( N ) Form 1 q = 0 2 M H 1 ( q ) ( N + T M M T M M + 1 + q )

S U M ( N , P S A , P T A 1 , P T A 2 ) = n = 0 N 1 q = 0 2 M ( K M + 1 + n D M + 1 , 1 + ( n 2 ) D M + 1 , 2 ) H 1 ( q ) ( n + Y Y + q ) = q = 0 2 M ( K M + 1 + ( q 1 ) D M + 1 , 1 + ( q 2 ) D M + 1 , 2 ) H 1 ( q ) ( N + Y Y + q + 1 ) + q = 0 2 M ( ( Y + q + 1 ) D M + 1 , 1 + q ( Y + q + 1 ) D M + 1 , 2 ) H 1 ( q ) ( N + Y Y + q + 2 ) + q = 0 2 M ( Y + q + 2 2 ) H 1 ( q ) ( N + Y Y + q + 3 ) D M + 1 , 2

Y + q + 1 = T M + 1 ( M + 1 ) + ( q + 1 ) , Y + q + 2 = T M + 1 ( M + 1 ) + ( q + 2 ) = q = 0 2 M ( K M + 1 + ( q 1 ) D M + 1 , 1 + ( q 2 ) D M + 1 , 2 ) H 1 ( q ) ( N + T M + 1 ( M + 1 ) T M + 1 ( M + 1 ) + 1 + q ) + q = 0 2 M ( T M + 1

Conflicts of Interest

The author declares no conflicts of interest.

References

[1] Peng, J. (2021) Further Study of the Shape of the Numbers and More Calculation Formulas. Open Access Library Journal, 8, 1-27. https://doi.org/10.4236/oalib.1107969
[2] Quaintance, J. and Gould, H.W. (2015) Combinatorial Identities for Stirling Numbers: The Unpublished Notes of H.W. Gould. World Scientific, Singapore.
[3] Xu, L.Z., Jiang, M.S. and Zhu, Z.Q. (1983) Computational Combinatorics. Shanghai Science and Technology, Shanghai. (In Chinese)
[4] Butler, S. and Karasik, P. (2010) A Note on Nested Sums. Journal of Integer Sequences, 13, Article 10.4.4.
[5] MacMahon, P.A. (1913) The Indices of Permutations and the Derivation the Refrom of Functions of a Single Variable Associated with the Permutations of Any Assemblage of Objects. American Journal of Mathematics, 35, 281-322. https://doi.org/10.2307/2370312

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.