Share This Article:

Effect of Temperature on the Molecular Weight Distribution in the Different Ranks of Coal during the On-Line Investigation of Coal Pyrolysis Gas Using Direct Photoionization Mass Spectroscopy

Abstract Full-Text HTML XML Download Download as PDF (Size:5974KB) PP. 69-80
DOI: 10.4236/ijcce.2015.44007    2,534 Downloads   2,915 Views  

ABSTRACT

Coal pyrolysis gas from different ranks of coal was monitored on real time basis using photoionization mass spectroscopy. The molecular weight distribution of different products as a function of temperature from various coal ranks studied was observed. It was noted that the release of different classes of compounds like phenols, alkenes, alkylated aromatics and aromatic skeletons was temperature dependent. For all the coal ranks at lower temperatures phenols were the main component, with alkenes and alkylated aromatics at slight higher temperatures and aromatic skeletons were released at the highest temperatures studied.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Mthembu, M. , Zimmermann, R. , Streibel, T. and Sklorz, M. (2015) Effect of Temperature on the Molecular Weight Distribution in the Different Ranks of Coal during the On-Line Investigation of Coal Pyrolysis Gas Using Direct Photoionization Mass Spectroscopy. International Journal of Clean Coal and Energy, 4, 69-80. doi: 10.4236/ijcce.2015.44007.

References

[1] Badaoui, O., Marion, C., Nadége, C., Didier, T.T. and Alain, Q. (2010) Characterization of Oxygenated Species in Coal Liquefaction Products. Energy & Fuels, 24, 5807-5816. http://dx.doi.org/10.1021/ef100894n
[2] Crnomarkovic, N., Repic, B., Mladenovic, R., Neskovic, O. and Veljkovic, M. (2007) Experimental Investigation of Role of Steam in Entrained Flow Coal Gasification. Fuel, 86, 194-202. http://dx.doi.org/10.1016/j.fuel.2006.06.015
[3] Zhang, D. (2004) Thermal Decomposition of Coal. http://www.eolss.net/sample-chapters/c08/E3-04-03-02.pdf
[4] Freihaut, J.D., Proscia, W.M. and Seery, D.J. (1989) Chemical Characteristics of Tar Produced in a Novel Low Severity, Entrained-Flow Reactor. Energy & Fuels, 3, 692-703. http://dx.doi.org/10.1021/ef00018a006
[5] Wang, S., Tang, Y., Schobert, H.H., Guo, Y., Gao, W. and Lu, X. (2013) FTIR and Simultaneous TG/MS/FTIR Study of Late Permian Coals from Southern China. Journal of Analytical and Applied Pyrolysis, 100, 75-80. http://dx.doi.org/10.1016/j.jaap.2012.11.021
[6] Safarova, M., Kusy, J. and Andel, L. (2005) Pyrolysis of Brown Coal under Different Process Conditions. Fuel, 84, 2280-2285. http://dx.doi.org/10.1016/j.fuel.2005.05.015
[7] Chen, H., Yang, H., Ju, F., Wang, J. and Zhang, S. (2007) The Influence of Pressure and Temperature on Coal Pyrolysis/Gasification. Asia-Pacific Journal of Chemical Engineering, 2, 203-212. http://onlinelibrary.wiley.com/doi/10.1002/apj.42/abstract http://dx.doi.org/10.1002/apj.42
[8] Van Heek, K.H. and Muhlen, H.J. (1987) Effect of Coal and Char Properties on Gasification. Fuel Processing Technology, 15, 113-133. http://dx.doi.org/10.1016/0378-3820(87)90039-7
[9] Herrod, A.A., Stokes, B.J. and Schulten, H.R. (1993) Coal Tar Analysis by Mass Spectrometry a Comparison of Methods. Fuel, 72, 31-43. http://dx.doi.org/10.1016/0016-2361(93)90372-9
[10] Schulten, H.R. (1992) Mass Spectrometric and Chemometric Studies of Thermoplastic Properties of Coals. 2. Field Ionization Mass Spectrometry of Coals. Energy & Fuel, 6, 103-108. http://dx.doi.org/10.1021/ef00031a015
[11] Wang, X.M., Marzec, A. and Schulten, H.R. (1989) Coal Characterization by On-Line Pyrolysis-Field Ionization Mass Spectrometry. Fresenius’ Zeitschrift für Analytische Chemie, 333, 793-799.
[12] Schulten, H.R. (1982) Pyrolysis-Field Desorption Mass Spectrometry of Coal. Fuel, 61, 670-676. http://dx.doi.org/10.1016/0016-2361(82)90015-1
[13] Herrod, A.A., Stokes, B.J., Tye, R.E., Gaines, A.F. and Li, C.Z. (1993) Comparison of Fast Atom Bombardment Mass Spectrometry and Size Exclusion Chromatography in Defining High Molecular Masses in Coal-Derived Materials. Fuel, 72, 1317-1325. http://dx.doi.org/10.1016/0016-2361(93)90131-K
[14] Parker, J.E., Johnson, C.A.F., John, P., Smith, G.P., Herod, A.A., Stokes, B.J. and Kandiyoti, R. (1993) Identification of Large Molecular Mass Material in High Temperature Coal Tars and Pitches by Laser Desorption Mass Spectroscopy. Fuel, 72, 1381-1391. http://dx.doi.org/10.1016/0016-2361(93)90414-W
[15] Janitschke, W., Möller, U., Uherek, E. and Kleinermanns, K. (2000) Investigations of Coals by On-Line Coupled Laser Desorption/Gas Chromatography/Mass Spectrometry (LD/GC/MS). Journal of Analytical and Applied Pyrolysis, 56, 99-111. http://dx.doi.org/10.1016/S0165-2370(00)00086-3
[16] Domin, M., Li, S., Lazaro, M.J., Herod, A.A., Larsen, J.W. and Kandiyoti, R. (1998) Large Molecular Mass Materials in Coal-Derived Liquids by 252Cf-Plasma and Matrix-Assisted Laser Desorption Mass Spectrometry. Energy & Fuel, 12, 485-492. http://pubs.acs.org/doi/abs/10.1021/ef970131u
[17] Herod, A.A., Lazaro, M.J., Domin, M., Islas, C.A. and Kandiyoti, J. (2000) Molecular Mass Distributions and Structural Characterisation of Coal Derived Liquids. Fuel, 79, 323-337. http://dx.doi.org/10.1016/S0016-2361(99)00167-2
[18] George, A., Morgan, T.J., Alvarez, P., Millan, M., Herod, A.A. and Kandiyoti, R. (2010) Fractionation of a Coal Tar Pitch by Ultra-Filtration, and Characterization by Size Exclusion Chromatography, UV-Fluorescence and Laser Desorption-Mass Spectroscopy. Fuel, 89, 2953-2970. http://dx.doi.org/10.1016/j.fuel.2010.04.011
[19] Wu, Z., Jernström, S., Hughey, C.A., Rodgers, R.P. and Marshall, A.G. (2003) Resolution of 10 000 Compositionally Distinct Components in Polar Coal Extracts by Negative-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Fuels, 17, 946-953. http://pubs.acs.org/doi/abs/10.1021/ef030026m
[20] Kim, S., Rodgers, R.P., Blakney, G.T., Hendrickson, C.L. and Marshall, A.G. (2009) Automated Electrospray Ionization FT-ICR Mass Spectrometry for Petroleum Analysis. Journal American Society Mass Spectrometry, 20, 263-268. http://link.springer.com/article/10.1016%2Fj.jasms.2008.10.001
[21] Gao, S., Zhang, Y., Meng, J. and Shu, J. (2009) Real-Time Analysis of Soot Emissions from Bituminous Coal Pyrolysis and Combustion with a Vacuum Ultraviolet Photoionization Aerosol Time-of-Flight Mass Spectrometer. Science of the Environment, 407, 1193-1199. http://dx.doi.org/10.1016/j.scitotenv.2008.10.026
[22] Jia, L., Weng, J., Wang, Y., Sun, S., Zhou, Y. and Qi, F. (2013) Online Analysis of Volatile Products from Bituminous Coal Pyrolysis with Synchrotron Vacuum Ultraviolet Photoionization Mass Spectrometry. Energy & Fuels, 27, 694- 701.
[23] Kiersch, K., Kruse, J., Eckhardt, K.-U., Fendt, A., Streibel, T., Zimmermann, R., Broll, G. and Leinweber, P. (2012) Impact of Grassland Burning on Soil Organic Matter as Revealed by a Synchrotron- and Pyrolysis-Mass Spectrometry- Based Multi-Methodological Approach. Organic Geochemistry, 44, 8-20. http://dx.doi.org/10.1016/j.orggeochem.2011.12.002
[24] Zimmermann, R., Heger, H.J. and Kettrup, A. (1999) On-Line Monitoring of Traces of Aromatic-, Phenolic- and Chlorinated Components in Flue Gases of Industrial Scale Incinerators and Cigarette Smoke by Direct-Inlet Laser Ionization-Mass Spectrometry (REMPI-TOFMS). Journal of Analytical Chemistry, 363, 720-730. http://dx.doi.org/10.1007/s002160051281
[25] Zimmermann, R., Heger, H.J. and Kettrup, A. (2000) Direct Observation of the Formation of Aromatic Pollutants in Waste Incineration Flue Gases by On-Line REMPI-TOFMS Laser Mass Spectrometry. Journal of Analytical Chemistry, 366, 368-374. http://dx.doi.org/10.1007/s002160050075
[26] Heger, H.J., Zimmermann, R., Dorfner, R., Beckmann, M., Griebel, H., Kettrup, A. and Boesl, U. (1999) On-Line Emission Analysis of Polycyclic Aromatic Hydrocarbons Down to PPTV Concentration Levels in the Flue Gas of an Incineration Pilot Plant with a Mobile Resonance-Enhanced Multiphoton Ionization Time-of-Flight Mass Spectrometer. Analytical Chemistry, 71, 46-57. http://dx.doi.org/10.1021/ac980611y
[27] Mühlberger, F., Wieser, J., Uldrich, A. and Zimmermann, R. (2002) Single Photon Ionization (SPI) via Incoherent VUV-Excimer Light: Robust and Compact Time-of-Flight Mass Spectrometer for On-Line, Real-Time Process Gas Analysis. Analytical Chemistry, 74, 3790-3801. http://pubs.acs.org/doi/abs/10.1021/ac0200825
[28] Fan, X., Wei, X.-Y. and Zong, Z.-M. (2013) Application of Gas Chromatography/Mass Spectrometry in Studies on Separation and Identification of Organic Species in Coals. Fuel, 109, 28-32. http://dx.doi.org/10.1016/j.fuel.2012.09.003
[29] Kong, J., Zhao, R., Bai, Y., Li, G., Zhang, C. and Li, F. (2014) Study on the Formation of Phenols during Coal Flash Pyrolysis Using Pyrolysis-GC/MS. Fuel Processing Technology, 127, 41-46. http://dx.doi.org/10.1016/j.fuproc.2014.06.004
[30] Lu, G.Q. and Do, D.D. (1994) Comparison of Structural Models for High-Ash Char Gasification. Carbon, 32, 247-263. http://dx.doi.org/10.1016/0008-6223(94)90188-0
[31] Arenillas, A., Rubiera, F. and Pis, J.J. (1999) Simultaneous Thermogravimetric-Mass Spectrometric Study on the Pyrolysis Behavior of Different Rank Coals. Journal of Analytical and Applied Pyrolysis, 50, 31-46. http://dx.doi.org/10.1016/S0165-2370(99)00024-8
[32] Adounkpe, J., Aina, M., Mama, D. and Sinsin, B. (2013) Gas Chromatography Mass Spectrometry Identification of Labile Radicals Formed during Pyrolysis of Catechool, Hydroquinone, and Phenol through Neutral Pyrolysis Product Mass Analysis. ISRN Environmental Chemistry, 2013, 1-8. http://dx.doi.org/10.1155/2013/930573
[33] Kidena, K., Tani, Y., Murata, S. and Nomura, M. (2004) Quantitative Elucidation of Bridge Bonds and Side Chains in Brown Coals. Fuel, 83, 1697-1702. http://dx.doi.org/10.1016/j.fuel.2004.01.021
[34] Borrego, A.G., Alarez, D. and Menendez, R. (1997) Effects of Inertinite Content in Coal on Char Structure and Combustion. Energy and Fuels, 43, 702-761. http://pubs.acs.org/doi/abs/10.1021/ef960130m
[35] Dhaneswar, S.R. and Pisupati, S.V. (2012) Oxy-Fuel Combustion: The Effect of Coal Rank and the Role of Char-CO2 Reaction. Fuel Processing Technology, 102, 156-165. http://dx.doi.org/10.1016/j.fuproc.2012.04.029

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.