[1]
|
Badaoui, O., Marion, C., Nadége, C., Didier, T.T. and Alain, Q. (2010) Characterization of Oxygenated Species in Coal Liquefaction Products. Energy & Fuels, 24, 5807-5816. http://dx.doi.org/10.1021/ef100894n
|
[2]
|
Crnomarkovic, N., Repic, B., Mladenovic, R., Neskovic, O. and Veljkovic, M. (2007) Experimental Investigation of Role of Steam in Entrained Flow Coal Gasification. Fuel, 86, 194-202. http://dx.doi.org/10.1016/j.fuel.2006.06.015
|
[3]
|
Zhang, D. (2004) Thermal Decomposition of Coal. http://www.eolss.net/sample-chapters/c08/E3-04-03-02.pdf
|
[4]
|
Freihaut, J.D., Proscia, W.M. and Seery, D.J. (1989) Chemical Characteristics of Tar Produced in a Novel Low Severity, Entrained-Flow Reactor. Energy & Fuels, 3, 692-703. http://dx.doi.org/10.1021/ef00018a006
|
[5]
|
Wang, S., Tang, Y., Schobert, H.H., Guo, Y., Gao, W. and Lu, X. (2013) FTIR and Simultaneous TG/MS/FTIR Study of Late Permian Coals from Southern China. Journal of Analytical and Applied Pyrolysis, 100, 75-80.
http://dx.doi.org/10.1016/j.jaap.2012.11.021
|
[6]
|
Safarova, M., Kusy, J. and Andel, L. (2005) Pyrolysis of Brown Coal under Different Process Conditions. Fuel, 84, 2280-2285. http://dx.doi.org/10.1016/j.fuel.2005.05.015
|
[7]
|
Chen, H., Yang, H., Ju, F., Wang, J. and Zhang, S. (2007) The Influence of Pressure and Temperature on Coal Pyrolysis/Gasification. Asia-Pacific Journal of Chemical Engineering, 2, 203-212.
http://onlinelibrary.wiley.com/doi/10.1002/apj.42/abstract
http://dx.doi.org/10.1002/apj.42
|
[8]
|
Van Heek, K.H. and Muhlen, H.J. (1987) Effect of Coal and Char Properties on Gasification. Fuel Processing Technology, 15, 113-133. http://dx.doi.org/10.1016/0378-3820(87)90039-7
|
[9]
|
Herrod, A.A., Stokes, B.J. and Schulten, H.R. (1993) Coal Tar Analysis by Mass Spectrometry a Comparison of Methods. Fuel, 72, 31-43. http://dx.doi.org/10.1016/0016-2361(93)90372-9
|
[10]
|
Schulten, H.R. (1992) Mass Spectrometric and Chemometric Studies of Thermoplastic Properties of Coals. 2. Field Ionization Mass Spectrometry of Coals. Energy & Fuel, 6, 103-108. http://dx.doi.org/10.1021/ef00031a015
|
[11]
|
Wang, X.M., Marzec, A. and Schulten, H.R. (1989) Coal Characterization by On-Line Pyrolysis-Field Ionization Mass Spectrometry. Fresenius’ Zeitschrift für Analytische Chemie, 333, 793-799.
|
[12]
|
Schulten, H.R. (1982) Pyrolysis-Field Desorption Mass Spectrometry of Coal. Fuel, 61, 670-676.
http://dx.doi.org/10.1016/0016-2361(82)90015-1
|
[13]
|
Herrod, A.A., Stokes, B.J., Tye, R.E., Gaines, A.F. and Li, C.Z. (1993) Comparison of Fast Atom Bombardment Mass Spectrometry and Size Exclusion Chromatography in Defining High Molecular Masses in Coal-Derived Materials. Fuel, 72, 1317-1325. http://dx.doi.org/10.1016/0016-2361(93)90131-K
|
[14]
|
Parker, J.E., Johnson, C.A.F., John, P., Smith, G.P., Herod, A.A., Stokes, B.J. and Kandiyoti, R. (1993) Identification of Large Molecular Mass Material in High Temperature Coal Tars and Pitches by Laser Desorption Mass Spectroscopy. Fuel, 72, 1381-1391. http://dx.doi.org/10.1016/0016-2361(93)90414-W
|
[15]
|
Janitschke, W., Möller, U., Uherek, E. and Kleinermanns, K. (2000) Investigations of Coals by On-Line Coupled Laser Desorption/Gas Chromatography/Mass Spectrometry (LD/GC/MS). Journal of Analytical and Applied Pyrolysis, 56, 99-111. http://dx.doi.org/10.1016/S0165-2370(00)00086-3
|
[16]
|
Domin, M., Li, S., Lazaro, M.J., Herod, A.A., Larsen, J.W. and Kandiyoti, R. (1998) Large Molecular Mass Materials in Coal-Derived Liquids by 252Cf-Plasma and Matrix-Assisted Laser Desorption Mass Spectrometry. Energy & Fuel, 12, 485-492. http://pubs.acs.org/doi/abs/10.1021/ef970131u
|
[17]
|
Herod, A.A., Lazaro, M.J., Domin, M., Islas, C.A. and Kandiyoti, J. (2000) Molecular Mass Distributions and Structural Characterisation of Coal Derived Liquids. Fuel, 79, 323-337. http://dx.doi.org/10.1016/S0016-2361(99)00167-2
|
[18]
|
George, A., Morgan, T.J., Alvarez, P., Millan, M., Herod, A.A. and Kandiyoti, R. (2010) Fractionation of a Coal Tar Pitch by Ultra-Filtration, and Characterization by Size Exclusion Chromatography, UV-Fluorescence and Laser Desorption-Mass Spectroscopy. Fuel, 89, 2953-2970. http://dx.doi.org/10.1016/j.fuel.2010.04.011
|
[19]
|
Wu, Z., Jernström, S., Hughey, C.A., Rodgers, R.P. and Marshall, A.G. (2003) Resolution of 10 000 Compositionally Distinct Components in Polar Coal Extracts by Negative-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Fuels, 17, 946-953. http://pubs.acs.org/doi/abs/10.1021/ef030026m
|
[20]
|
Kim, S., Rodgers, R.P., Blakney, G.T., Hendrickson, C.L. and Marshall, A.G. (2009) Automated Electrospray Ionization FT-ICR Mass Spectrometry for Petroleum Analysis. Journal American Society Mass Spectrometry, 20, 263-268.
http://link.springer.com/article/10.1016%2Fj.jasms.2008.10.001
|
[21]
|
Gao, S., Zhang, Y., Meng, J. and Shu, J. (2009) Real-Time Analysis of Soot Emissions from Bituminous Coal Pyrolysis and Combustion with a Vacuum Ultraviolet Photoionization Aerosol Time-of-Flight Mass Spectrometer. Science of the Environment, 407, 1193-1199. http://dx.doi.org/10.1016/j.scitotenv.2008.10.026
|
[22]
|
Jia, L., Weng, J., Wang, Y., Sun, S., Zhou, Y. and Qi, F. (2013) Online Analysis of Volatile Products from Bituminous Coal Pyrolysis with Synchrotron Vacuum Ultraviolet Photoionization Mass Spectrometry. Energy & Fuels, 27, 694- 701.
|
[23]
|
Kiersch, K., Kruse, J., Eckhardt, K.-U., Fendt, A., Streibel, T., Zimmermann, R., Broll, G. and Leinweber, P. (2012) Impact of Grassland Burning on Soil Organic Matter as Revealed by a Synchrotron- and Pyrolysis-Mass Spectrometry- Based Multi-Methodological Approach. Organic Geochemistry, 44, 8-20.
http://dx.doi.org/10.1016/j.orggeochem.2011.12.002
|
[24]
|
Zimmermann, R., Heger, H.J. and Kettrup, A. (1999) On-Line Monitoring of Traces of Aromatic-, Phenolic- and Chlorinated Components in Flue Gases of Industrial Scale Incinerators and Cigarette Smoke by Direct-Inlet Laser Ionization-Mass Spectrometry (REMPI-TOFMS). Journal of Analytical Chemistry, 363, 720-730.
http://dx.doi.org/10.1007/s002160051281
|
[25]
|
Zimmermann, R., Heger, H.J. and Kettrup, A. (2000) Direct Observation of the Formation of Aromatic Pollutants in Waste Incineration Flue Gases by On-Line REMPI-TOFMS Laser Mass Spectrometry. Journal of Analytical Chemistry, 366, 368-374. http://dx.doi.org/10.1007/s002160050075
|
[26]
|
Heger, H.J., Zimmermann, R., Dorfner, R., Beckmann, M., Griebel, H., Kettrup, A. and Boesl, U. (1999) On-Line Emission Analysis of Polycyclic Aromatic Hydrocarbons Down to PPTV Concentration Levels in the Flue Gas of an Incineration Pilot Plant with a Mobile Resonance-Enhanced Multiphoton Ionization Time-of-Flight Mass Spectrometer. Analytical Chemistry, 71, 46-57. http://dx.doi.org/10.1021/ac980611y
|
[27]
|
Mühlberger, F., Wieser, J., Uldrich, A. and Zimmermann, R. (2002) Single Photon Ionization (SPI) via Incoherent VUV-Excimer Light: Robust and Compact Time-of-Flight Mass Spectrometer for On-Line, Real-Time Process Gas Analysis. Analytical Chemistry, 74, 3790-3801. http://pubs.acs.org/doi/abs/10.1021/ac0200825
|
[28]
|
Fan, X., Wei, X.-Y. and Zong, Z.-M. (2013) Application of Gas Chromatography/Mass Spectrometry in Studies on Separation and Identification of Organic Species in Coals. Fuel, 109, 28-32.
http://dx.doi.org/10.1016/j.fuel.2012.09.003
|
[29]
|
Kong, J., Zhao, R., Bai, Y., Li, G., Zhang, C. and Li, F. (2014) Study on the Formation of Phenols during Coal Flash Pyrolysis Using Pyrolysis-GC/MS. Fuel Processing Technology, 127, 41-46.
http://dx.doi.org/10.1016/j.fuproc.2014.06.004
|
[30]
|
Lu, G.Q. and Do, D.D. (1994) Comparison of Structural Models for High-Ash Char Gasification. Carbon, 32, 247-263.
http://dx.doi.org/10.1016/0008-6223(94)90188-0
|
[31]
|
Arenillas, A., Rubiera, F. and Pis, J.J. (1999) Simultaneous Thermogravimetric-Mass Spectrometric Study on the Pyrolysis Behavior of Different Rank Coals. Journal of Analytical and Applied Pyrolysis, 50, 31-46.
http://dx.doi.org/10.1016/S0165-2370(99)00024-8
|
[32]
|
Adounkpe, J., Aina, M., Mama, D. and Sinsin, B. (2013) Gas Chromatography Mass Spectrometry Identification of Labile Radicals Formed during Pyrolysis of Catechool, Hydroquinone, and Phenol through Neutral Pyrolysis Product Mass Analysis. ISRN Environmental Chemistry, 2013, 1-8. http://dx.doi.org/10.1155/2013/930573
|
[33]
|
Kidena, K., Tani, Y., Murata, S. and Nomura, M. (2004) Quantitative Elucidation of Bridge Bonds and Side Chains in Brown Coals. Fuel, 83, 1697-1702. http://dx.doi.org/10.1016/j.fuel.2004.01.021
|
[34]
|
Borrego, A.G., Alarez, D. and Menendez, R. (1997) Effects of Inertinite Content in Coal on Char Structure and Combustion. Energy and Fuels, 43, 702-761. http://pubs.acs.org/doi/abs/10.1021/ef960130m
|
[35]
|
Dhaneswar, S.R. and Pisupati, S.V. (2012) Oxy-Fuel Combustion: The Effect of Coal Rank and the Role of Char-CO2 Reaction. Fuel Processing Technology, 102, 156-165. http://dx.doi.org/10.1016/j.fuproc.2012.04.029
|