Share This Article:

Some Applications of Optimal Control in Sustainable Fishing in the Baltic Sea

Abstract Full-Text HTML Download Download as PDF (Size:581KB) PP. 854-865
DOI: 10.4236/am.2011.27115    5,221 Downloads   9,454 Views   Citations


Issues related to the implementation of dynamic programming for optimal control of a three-dimensional dynamic model (the fish populations management problem) are presented. They belong to a class of models called Lotka-Volterra models. The existence of bionomic equilibria will be considered. The problem of optimal harvest policy is then solved for the control of various classes of its behaviour. Therefore the focus will be the optimality conditions by using the Bellman principle. Moreover, we consider a different form for the optimal value of the control vector, namely the feedback or closed-loop form of the control. Academic examples are studied in order to demonstrate the proposed methods.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

D. Stukalin and W. Schmidt, "Some Applications of Optimal Control in Sustainable Fishing in the Baltic Sea," Applied Mathematics, Vol. 2 No. 7, 2011, pp. 854-865. doi: 10.4236/am.2011.27115.


[1] M. Begon and M. Mortimer, “Populations?kologie,” Spektrum Akademischer Verlag, Heidelberg, 1997.
[2] A. J. Lotka,“Elements of Mathematical Biology,” Dover, New York, 1956.
[3] M. Papageorgiou,“Optimierung,” R. Oldenbourg Verlag, München, 1996.
[4] L. Grüne, “Modeling with Differential Equations,” Lecture Notes, University of Bayreuth, 2003.
[5] T. Christiaans, “Neoklassische Wachstumstheorie,” Books on Demand, Norderstedt, 2004.
[6] M. Brokate, “Control Theory,” Institute of Informatics and Mathematics, Technical University of Munich, Munich, 1994.
[7] A. Pantelejew and A. Bortakovskij, “Control Theory in Examples and Practices,” Vysshaya Shkola, Moscow, 2003.
[8] W. H. Schmidt, “Durch Integralgleichungen Beschrie-bene Optimale Prozesse mit Nebenbedingungen in Bana- chr?umen-Notwendige Optimalit ?tsbedingungen,” Journal of Applied Mathematics and Mechanics, Vol. 62, No. 2, 1982, pp. 65-75. doi: 10.1002/zamm.19820620202
[9] M. Gerdts, “Optimal Control of Ordinary-Differential Equations,” University of Hamburg, Hamburg, 2006.
[10] W. Alt, “Nichtlineare Optimierung: Eine Einführung in Theorie, Verfahren und Anwendungen,” Viewer and teubner Verlag, Wiesbaden, 2002.
[11] R. D?ring, “Die Zukunft der Fischerei im Biosph?ren-Reservat Südost-Rügen,” Peter Lang GmbH, Frankfurt, 2001.
[12] P. Ernst and W. Müller, “Die Deutsche und Internationale Dorschfischerei in der Ostsee im jahr 1998,” Informatio-nen für die Fischwirtschaft aus der Fischereiforschung, Vol. 46, No. 3, 1999, pp. 32-35.
[13] M. Bardi, I. Capuzzo-Dolcetta, “Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,” Birkh?user, Boston, 1997. doi:10.1007/978-0-8176-4755-1
[14] L. Grüne, “Viskosit?tsl?sungen von Hamilton-Jacobi- Bellman Gleichungen: Eine Einführung,” Numerical Dyna- mics of Control Systems, 2004.
[15] P. Lions, “On the Hamilton-Jacobi-Bellman Equations,” Acta Applicandae Mathematicae, Vol. 1, No. 1, 1983, pp. 17-41. doi:10.1007/BF02433840
[16] O. Rechlin, “Fischbest?nde der Ostsee, ihre Entwicklung in den Jahren seit 1970 und Schlussfolgerungen,” ihre Nutzung, Rostock, 1999.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.