Share This Article:

Performance Investigation of Membrane Electrode Assemblies for High Temperature Proton Exchange Membrane Fuel Cell

Abstract Full-Text HTML Download Download as PDF (Size:387KB) PP. 95-100
DOI: 10.4236/jpee.2013.15016    3,776 Downloads   5,916 Views   Citations

ABSTRACT

Different types of ABPBI (poly(2,5-benzimidazole)) membranes and polymer binders were evaluated to investigate the performance of MEAs for high temperature proton exchange membrane fuel cell (HT-PEMFC). The properties of the prepared MEAs were evaluated and analyzed by polarization curve, electrochemistry impedance spectroscopy (EIS), cyclic voltammetry (CV) and durability test. The results showed that MEA with modified ABPBI membrane (AM) has satisfactory performance and durability for fuel cell application. Compare to conventional PBI or Nafion binders, polytetrafluoroethylene (PTFE) and polyvinylidene difluoride (PVDF) are more attractive as binders in the catalyst layer (CL) of gas diffusion electrode (GDE) for HT-PEMFC.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Su, H. , Pasupathi, S. , Bladergroen, B. , Linkov, V. and G. Pollet, B. (2013) Performance Investigation of Membrane Electrode Assemblies for High Temperature Proton Exchange Membrane Fuel Cell. Journal of Power and Energy Engineering, 1, 95-100. doi: 10.4236/jpee.2013.15016.

References

[1] J. Zhang, Z. Xie, J. Zhang, Y. Tang, C. Song, T. Navessin, Z. Shi, D. Song, H. Wang, D. P. Wilkinson, Z.-S. Liu and S. Holdcroft, “High Temperature PEM Fuel Cells,” Journal of Power Sources, Vol. 160, No. 2, 2006, pp. 872- 891. http://dx.doi.org/10.1016/j.jpowsour.2006.05.034
[2] K. L. Hsueh, E. Gonzalez, S. Srinivasan and D. T. Chin, “Effects of Phosphoric Acid Concentration on Oxygen Reduction Kinetics at Platinum,” Journal of the Electro-chemical Society, Vol. 131, No. 1984, pp. 823-828.
[3] Q. Li, J. O. Jensen, R. F. Savinell and N. J. Bjerrum, “High Temperature Proton Exchange Membranes Based on Polybenzimidazoles for Fuel Cells,” Progress in Polymer Science, Vol. 34, No. 5, 2009, pp. 449-477. http://dx.doi.org/10.1016/j.progpolymsci.2008.12.003
[4] J. Lobato, P. Cañizares, M. A. Rodrigo, J. J. Linares and F. J. Pinar, “Study of the Influence of the Amount of PBI-H3PO4 in the Catalytic Layer of a High Temperature PEMFC,” International Journal of Hydrogen Energy, Vol. 35, No. 3, 2010, pp. 1347-1355. http://dx.doi.org/10.1016/j.ijhydene.2009.11.091
[5] C. Pan, Q. Li, J. O. Jensen, R. He, L. N. Cleemann, M. S. Nilsson, N. J. Bjerrum and Q. Zeng, “Preparation and Operation of Gas Diffusion Electrodes for High-Temperature Proton Exchange Membrane Fuel Cells,” Journal of Power Sources, Vol. 172, No. 1, 2007, pp. 278-286. http://dx.doi.org/10.1016/j.jpowsour.2007.07.019
[6] A.-L. Ong, G.-B. Jung, C.-C. Wu and W.-M. Yan, “Single-Step Fabrication of ABPBI-Based GDE and Study of Its MEA Characteristics for High-Temperature PEM Fuel Cells,” International Journal of Hydrogen Energy, Vol. 35, No. 15, 2010, pp. 7866-7873. http://dx.doi.org/10.1016/j.ijhydene.2010.05.040
[7] C. Wannek, W. Lehnert and J. Mergel, “Membrane Electrode Assemblies for High-Temperature Polymer Elec-trolyte Fuel Cells Based on Poly(2,5-Benzimidazole) Membranes with Phosphoric Acid Impregnation via the Catalyst Layers,” Journal of Power Sources, Vol. 192, No. 2, 2009, pp. 258-266. http://dx.doi.org/10.1016/j.jpowsour.2009.03.051
[8] M. Mamlouk and K. Scott, “Phosphoric Acid-Doped Elec-trodes for a PBI Polymer Membrane Fuel Cell,” International Journal of Energy Research, Vol. 35, No. 6, 2011, pp. 507-519. http://dx.doi.org/10.1002/er.1708
[9] Y. Oono, A. Sounai and M. Hori, “Long-Term Cell Degradation Mechanism in High-Temperature Proton Exchange Membrane Fuel Cells,” Journal of Power Sources, Vol. 210, 2012, pp. 366-373. http://dx.doi.org/10.1016/j.jpowsour.2012.02.098
[10] Y. Oono, T. Fukuda, A. Sounai and M. Hori, “Influence of Operating Temperature on Cell Performance and Endurance of High Temperature Proton Exchange Membrane Fuel Cells,” Journal of Power Sources, Vol. 195, No. 4, 2010, pp. 1007-1014. http://dx.doi.org/10.1016/j.jpowsour.2009.08.097
[11] B. P. Tripathi, M. Kumar and V. K. Shahi, “Highly Stable Proton Conducting Nanocomposite Polymer Electrolyte Membrane (PEM) Prepared by Pore Modifications: An Extremely Low Methanol Permeable PEM,” Journal of Membrane Science, Vol. 327, No. 1-2, 2009, pp. 145-154. http://dx.doi.org/10.1016/j.memsci.2008.11.014
[12] A. D. Modestov, M. R. Tarasevich, V. Y. Filimonov and N. M. Zagudaeva, “Degradation of High Temperature MEA with PBI-H3PO4 Membrane in a Life Test,” Elec-trochimica Acta, Vol. 54, No. 27, 2009, pp. 7121-7127. http://dx.doi.org/10.1016/j.electacta.2009.07.031
[13] H. Su, S. Pasupathi, B. J. Bladergroen, V. Linkov and B. G. Pollet, “Enhanced Performance of Polybenzimidazole-Based High Temperature Proton Exchange Membrane Fuel Cell with Gas Diffusion Electrodes Prepared by Automatic Catalyst Spraying under Irradiation Technique,” Journal of Power Sources, Vol. 242, No. 2013, pp. 510-519.
[14] J. W. Jung, S. K. Kim and J. C. Lee, “Preparation of Polybenzimidazole/Lithium Hydrazinium Sulfate Composite Membranes for High-Temperature Fuel Cell Applications,” Macromolecular Chemistry and Physics, Vol. 211, No. 12, 2010, pp. 1322-1329. http://dx.doi.org/10.1002/macp.200900712
[15] H. Su, S. Pasupathi, B. Bladergroen, V. Linkov and B. G. Pollet, “Optimization of Gas Diffusion Electrode for Po- lybenzimidazole-Based High Temperature Proton Exchange Membrane Fuel Cell: Evaluation of Polymer Binders in Catalyst Layer,” International Journal of Hydrogen Energy, Vol. 38, No. 26, 2013, pp. 11370-11378. http://dx.doi.org/10.1016/j.ijhydene.2013.06.107
[16] H. Su, T.-C. Jao, S. Pasupathi, B. J. Bladergroen, V. Linkov and B. G. Pollet, “A Novel Dual Catalyst Layer Structured Gas Diffusion Electrode for Enhanced Performance of High Temperature Proton Exchange Membrane Fuel Cell,” Journal of Power Sources, Vol. 246, No. 2014, pp. 63-67.
[17] J. Zhang, Y. Tang, C. Song and J. Zhang, “Polybenzimi- da-zole-Membrane-Based PEM Fuel Cell in the Tempera- ture Range of 120-200?C,” Journal of Power Sources, Vol. 172, No. 1, 2007, pp. 163-171. http://dx.doi.org/10.1016/j.jpowsour.2007.07.047
[18] T. J. Schmidt and J. Baurmeister, “Properties of High-Temperature PEFC Celtec?-P 1000 MEAs in Start/Stop Operation Mode,” Journal of Power Sources, Vol. 176, No. 2, 2008, pp. 428-434. http://dx.doi.org/10.1016/j.jpowsour.2007.08.055
[19] S. Yu, L. Xiao and B. C. Benicewicz, “Durability Studies of PBI-based High Temperature PEMFCs,” Fuel Cells, Vol. 8, No. 3-4, 2008, pp. 165-174. http://dx.doi.org/10.1002/fuce.200800024
[20] C. Wannek, B. Kohnen, H. F. Oetjen, H. Lippert and J. Mergel, “Durability of ABPBI-Based MEAs for High Temperature PEMFCs at Different Operating Conditions,” Fuel Cells, Vol. 8, No. 2, 2008, pp. 87-95. http://dx.doi.org/10.1002/fuce.200700059

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.