Share This Article:

The Effect of Antimony Substitution on the Magnetic and Structural Properties of Fe0.75–xSi0.25Sbx Alloys

Abstract Full-Text HTML Download Download as PDF (Size:304KB) PP. 61-65
DOI: 10.4236/wjcmp.2012.22011    3,081 Downloads   5,911 Views  

ABSTRACT

The results of the investigation of the magnetic and structural properties of the alloy system Fe0.75–xSi0.25Sbx, where x = 0, 0.05, 0.1, 0.15, 0.2, and 0.25 synthesized by mechanical alloying followed by heat treatment are described. The x-ray diffraction reveals that all samples crystallize in the DO3-type cubic phase structure. Substituting Fe by Sb led to a decrease in the lattice constant and the unit cell volume. The magnetic properties are investigated by vibrating sample magnetometer and show that all the samples are ferromagnetically ordered at room temperature. The Curie temperature is found to decrease linearly from (850 ± 5) K for the parent alloy to (620 ± 5) K for the alloyith x = 0.25. The saturation magnetizations at room temperature and at 100 K are found to decrease with increasing the antimony concentration. The above results indicate that Sb dissolves in the cubic structure of this alloy system.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

I. Al-Omari and M. Anantharaman, "The Effect of Antimony Substitution on the Magnetic and Structural Properties of Fe0.75–xSi0.25Sbx Alloys," World Journal of Condensed Matter Physics, Vol. 2 No. 2, 2012, pp. 61-65. doi: 10.4236/wjcmp.2012.22011.

References

[1] S. Sarkar, C. Bansal and A. Chatterjee, “Gibbs-Thomson Effect in Nanocrystalline Fe-Ge,” Physical Review B, Vol. 62, No. 5, 2000, pp. 3218-3222. doi:10.1103/PhysRevB.62.3218
[2] Z. Q. Gao and B. Fultz, “Transient B32-Like Order during the Early Stages of Ordering in Undercooled Fe3Al,” Philosophical Magazine B, Vol. 67, No. 6, 1993, pp. 787. doi:10.1080/13642819308219325
[3] S. Sarkar and C. Bansal, “Disorder-Order and Structural Phase Transformations in Nanocrystalline Fe3–xMnxGe Alloys Synthesized by Mechanical Alloying,” Journal of Alloys and Compounds, Vol. 366, No. 1-2, 2004, pp. 107- 119.
[4] R. Mantovan, M. Georgieva, M. Fanciulli, A. Goikhman, N. Barantcev, Yu. Lebedinskil and A. Zenkevich, “Synthesis and Characterization of Fe3Si/SiO2 Structures for Spintronics,” Physica Status Solidi (A), Vol. 205, No. 8, 2008, pp. 1753-1757.
[5] K. Ishikawa, R. Kainuma, I. Ohnuma, K. Aoki and K. Ishida, “Phase Stability of the X2AlTi (X: Fe, Co, Ni and Cu) Heusler and B2-Type Intermetallic Compounds,” Acta Materialia, Vol. 50, No. 9, 2002, pp. 2233-2243. doi:10.1016/S1359-6454(01)00434-7
[6] S. Suga, S. Imada, A. Yamasaki, S. Ueda, T. Muro and Y. Saitho, “X-MCD at Twin-Helical Undulator Beam Line BL25SU of Spring-8,” Journal of Magnetism and Magnetic Materials, Vol. 233, No. 1-2, 2001, pp. 60-64. doi:10.1016/S0304-8853(01)00228-1
[7] G. L. F. Fraga, P. Pureur and D. E. Brandao, “Spontaneous Magnetoimpedance in the Heusler Compounds Pd2MnSn and Pd2MnSb near the Curie Temperature,” Solid State Communications, Vol. 124, No. 1-2, 2002, pp. 7-10. doi:10.1016/S0038-1098(02)00476-3
[8] J. W. Dong, J. Lu, J. Q. Xie, L. C. Chen, R. D. James, S. Mckernan and C. J. palmstrom, “MBE Growth of Ferro-magnetic Single Crystal Heusler Alloys on (0 0 1) Ga1–xInxAs,” Physica E, Vol. 10, No. 1-3, 2001, pp. 428- 432. doi:10.1016/S1386-9477(01)00131-X
[9] G. A. Al-Nawashi, S. H. Mahmood, A. D. Lehlooh and A. S. Saleh, “Mossbauer Spectroscopic Study of Order-Disorder Phenomena in Fe3–xMnxSi,” Physica B, Vol. 321, No. 1-4, 2002, pp. 167-172. doi:10.1016/S0921-4526(02)00845-1
[10] Y. Kobayashi, T. Kaneko, M. Kamogawa, K. Asai, K. Akiyama and H. Funakubo, “Structural Characterization by Electronic Transport Properties on Fe3Si Films,” Journal of Physics D: Applied Physics, Vol. 40, No. 22, 2007, pp. 6873-6878. doi:10.1088/0022-3727/40/22/003
[11] S. Yoon and J. Booth, “Magnetic Properties and Structures of Some Ordered (FeMn)3Si Alloys,” Journal of Physics F: Metal Physics, Vol. 7, No. 6, 1977, pp. 1079- 1095. doi:10.1088/0305-4608/7/6/022
[12] J. Waliszewski, L. Dobrzynski, A. Malinowski, D. Satula, K. Szmanski, W. Prandl, Th. Brückel and O. Scharpf, “Magnetic Moment Distribution in Fe3–xCrxSi Alloys,” Journal of Magnetism and Magnetic Materials, Vol. 132, No. 1-3, 1994, pp. 349-358. doi:10.1016/0304-8853(94)90331-X
[13] V. A. Niculescu, T. J. Burch and J. I. Budnick, “A Local Environment Description of Hyperfine Fields and Atomic Moments in Fe3–xTxSi Alloys,” Journal of Magnetism and Magnetic Materials, Vol. 39, No. 3, 1983, pp. 223-267. doi:10.1016/0304-8853(83)90084-7
[14] M. Hansen, “Constitution of Binary Alloys,” McGraw-Hill, New York, 1958.
[15] M. B. Stearns, “Internal Magnetic Fields, Isomer Shifts, and Relative Abundances of the Various Fe Sites in FeSi Alloys,” Physical Review, Vol. 129, No. 3, 1963, pp. 1136-1144. doi:10.1103/PhysRev.129.1136
[16] J. J. Budnick, S. Skalski, T. J. Burch and J. H. Wernick, “Hyperfine Fields in Fe-Si Alloys,” Journal of Applied Physics, Vol. 38, No. 3, 1967, pp. 1137-1138. doi:10.1063/1.1709514
[17] A. Ionescu, C. A. F. Vaz, T. Try-piniotis, C. M. Gütler, H. García-Miquel, J. A. C. Bland, M. E. Vickers, R. M. Dalgliesh, S. Langridge, Y. Bugoslavsky, Y. Miyoshi, L. F. Cohen and K. R. A. Ziebeck, “Structural, Magnetic, Electronic, and Spin Transport Properties of Epitaxial Fe3Si/ GaAs(001),” Physical Review B, Vol. 71, No. 9, 2005, pp. 1-9. doi:10.1103/PhysRevB.71.094401
[18] J. Prakash, S. J. Singh, G. Thakur, S. Patnaik and A. K. Ganguli, “The Effect of Antimony Doping on the Transport and Magnetic Properties of Ce(O/F)FeAs,” Super-conductor Science and Technology, Vol. 24, No. 12, 2011, p. 125008. doi:10.1088/0953-2048/24/12/125008
[19] T. S. Dixon, S. W. Charles and J. Popplewell, “The Effect of the Addition of Antimony on the Physical and Magnetic Properties of Iron Particles in Mercury,” Journal of Physics F: Metal Physics, Vol. 11, No. 9, 1981, pp. 1931-1941. doi:10.1088/0305-4608/11/9/022
[20] M. Purnanandam, T, Bhimasankaram and S. V. Suryanarayana, “Effect of Antimony Doping on Magnetic Properties of Ni-Zn Ferrites,” Journal of Materials Science, Vol. 26, No. 22, 1991, pp. 6131-6134. doi:10.1007/BF01113895
[21] S. Cowdery and F. Kayser, “Lattice Parameters of Ferro-magnetic DO3-Structured Iron-Aluminum-Silicon Alloys,” Materials Research Bulletin, Vol. 14, No. 1, 1979, pp. 91- 99. doi:10.1016/0025-5408(79)90236-8
[22] J. Shobaki, I. A. Al-Omari, M. K. Hassan, B. A. Albiss, K. A. Azez, M.-Ali Al-Akhras, H. H. Hamdeh and S. H. Mah-mood, “M?ssbauer and Structural Studies of Fe0.7–xVxAl0.3 Alloys,” Journal of Magnetism and Magnetic Materials, Vol. 213, No. 1-2, 2000, pp. 51-55. doi:10.1016/S0304-8853(99)00621-6
[23] I. A. Al-Omari and H. H. Hamdeh, “M?ssbauer and Structural Studies of Fe0.7–xVxSi0.3 Alloy System,” Physica Status Solidi (C), Vol. 1, No. 7, 2004, pp. 1809-1812.
[24] I. A. Al-Omari, A. Gismelseed, A. Rais, H. M. Widatallah, A. Al-Rawas, M. Elzain and A. A. Yousif, “Mossbauer Studies of Fe0.7–xSi0.3Mnx Alloys,” Hyperfine Interactions, Vol. 156-157, No. 1-4, 2004, pp. 123-127. doi:10.1023/B:HYPE.0000043233.23660.69
[25] M. Pugaczowa-Michalska, A. Go, L. Dobrzynski and S. Lipinski, “Electronic Structure and Magnetism of Fe3–xCrxSi Alloys,” Journal of Magnetism and Magnetic Materials, Vol. 256, No. 1-3, 2003, pp. 46-53. doi:10.1016/S0304-8853(02)00295-0
[26] N. I. Kulikov, D. Fristot, J. Hugel and A. V. Postnikov, “Interrelation between Structural Ordering and Magnetic Properties in bcc Fe-Si Alloys,” Physical Review B, Vol. 66, No. 1, 2002, p. 014206. doi:10.1103/PhysRevB.66.014206

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.