[1]
|
Dogan, A. (2024) Cultural Use and the Knowledge of Ethnomedicinal Plants in the Pülümür (Dersim-Tunceli) Region. Plants, 13, Article No. 2104. https://doi.org/10.3390/plants13152104
|
[2]
|
Ouoba, P., Ouédraogo, A. and Traoré, S. (2018) Savoirs culinaires et identités socio-culturelles: Cas de l’utilisation de Cissus populnea Guill. & Perr., le gombo de l’ethnie bobo au Burkina faso. Tropicultura, 36, 595-607. https://doi.org/10.25518/2295-8010.334
|
[3]
|
Irène, W., Eugenie, A., Durand, D., Eustache, A., Martial, N., Gautier, R., et al. (2022) Phenolic Profile and Antioxidant, Anti-Inflammatory Activity of Annona senegalensis, Ipomoea batatas, Terminalia superba and Psidium guajava Linn Extracts Used in Benin. American Journal of Plant Sciences, 13, 1296-1310. https://doi.org/10.4236/ajps.2022.139088
|
[4]
|
Salmerón-Manzano, E., Garrido-Cardenas, J.A. and Manzano-Agugliaro, F. (2020) Worldwide Research Trends on Medicinal Plants. International Journal of Environmental Research and Public Health, 17, Article No. 3376. https://doi.org/10.3390/ijerph17103376
|
[5]
|
Zakkad, F. (2017) Etude phytochimique et évaluation de quelques propriétés biolo-giques de trois espèces de l’Euphorbia. Thèse de Doctorat, Université Badji Mokhtar-Annaba.
|
[6]
|
Nasim, N., Sandeep, I.S. and Mohanty, S. (2022) Plant-Derived Natural Products for Drug Discovery: Current Approaches and Prospects. The Nucleus, 65, 399-411. https://doi.org/10.1007/s13237-022-00405-3
|
[7]
|
Belkhiri, F. (2018) Activité Antimicrobienne et Antioxydante de deux Plantes Mé-dicinales: Salvia verbenaca et Lepidium stadium. Thèse de Doctorat, Université Ferhat Abbas Sétif, 170 p.
|
[8]
|
Ouachinou, J.M.S., Dassou, G.H., Azihou, A.F., Adomou, A.C. and Yédomonhan, H. (2018) Breeders’ Knowledge on Cattle Fodder Species Preference in Rangelands of Benin. Journal of Ethnobiology and Ethnomedicine, 14, Article No. 66. https://doi.org/10.1186/s13002-018-0264-1
|
[9]
|
Wu, Z., Huang, X., Xu, M., Ma, X., Li, L., Shi, L., et al. (2018) Flueggeacosines A-C, Dimeric Securinine-Type Alkaloid Analogues with Neuronal Differentiation Activity from Flueggea suffruticosa. Organic Letters, 20, 7703-7707. https://doi.org/10.1021/acs.orglett.8b03432
|
[10]
|
Bailly, C. (2024) Traditional Uses, Pharmacology and Phytochemistry of the Medicinal Plant Flueggea virosa (Roxb. ex Willd.) Royle. Future Pharmacology, 4, 77-102. https://doi.org/10.3390/futurepharmacol4010007
|
[11]
|
Peng, Y., Zeng, N., Yao, Q., Peng, C., Sheng, W., Li, B., et al. (2023) A Review of the Medicinal Uses, Phytochemistry and Pharmacology of Genus Flueggea. Current Chinese Science, 3, 213-241. https://doi.org/10.2174/2210298102666220920110106
|
[12]
|
Tabuti, J.R.S. (2008) Herbal Medicines Used in the Treatment of Malaria in Budiope County, Uganda. Journal of Ethnopharmacology, 116, 33-42. https://doi.org/10.1016/j.jep.2007.10.036
|
[13]
|
d’Errico, F., Backwell, L., Villa, P., Degano, I., Lucejko, J.J., Bamford, M.K., et al. (2012) Early Evidence of San Material Culture Represented by Organic Artifacts from Border Cave, South Africa. Proceedings of the National Academy of Sciences, 109, 13214-13219. https://doi.org/10.1073/pnas.1204213109
|
[14]
|
Flueggea virosa. https://tropical.theferns.info/viewtropical.php?id=Flueggea+virosa
|
[15]
|
Fah, L., Klotoé, J.R., Dougnon, V., Koudokpon, H., Fanou, V.B.A., Dandjesso, C. and Loko, F. (2013) Étude ethnobotanique des plantes utilisées dans le traitement du diabète chez les femmes enceintes à Cotonou et Abomey-Calavi (Bénin). Journal of Animal and Plant Sciences, 18, 2647-2658.
|
[16]
|
Thiombiano, H.M., et al. (2022) Ethnobotanical Survey on Medicinal Plants Used in Burkina Faso in the Treatment of Breast Cancer, Phytochemistry and Antioxidant Activities: Euphorbia poissonii Pax and Flueggea virosa (Willd.) Voigt. (Euphorbiaceae). African Journal of Biology and Medical Research, 5, 1-16. https://doi.org/10.52589/ajbmr-udc9chlg
|
[17]
|
Dénou, A., Haïdara, M., Diakité, F., Doumbia, S., Lassine Dembélé, D. and Sanogo, R. (2021) Phytochemicals and Biological Activities of Flueggea virosa (Phyllanthaceae) Used in the Traditional Treatment of Benign Prostatic Hyperplasia in Mali. Journal of Diseases and Medicinal Plants, 7, 119-126. https://doi.org/10.11648/j.jdmp.20210704.14
|
[18]
|
Mashile, S.P., Tshisikhawe, M.P. and Masevhe, N.A. (2018) Indigenous Fruit Plants Species of the Mapulana of Ehlanzeni District in Mpumalanga Province, South Africa. South African Journal of Botany, 115, 297. https://doi.org/10.1016/j.sajb.2018.02.077
|
[19]
|
Satpute, S.V., Sinkar, S.R. and Sarode, A.M. (2021) Wild Edible Fruit Plants and Their Use by Tribal People and Local Villagers: A Survey-Based Study. International Research Journal of Science and Engineering A, 11, 256-262.
|
[20]
|
Ajaib, M., Pullaiah, T. and Shah, S. (2022) Phytochemistry and Pharmacology of Flueggea virosa (Roxb. ex Willd.) Royle. In: Pullaiah, T., Ed., Bioactives and Pharmacology of Medicinal Plants, Apple Academic Press, 187-198. https://doi.org/10.1201/9781003281658-14
|
[21]
|
Maroyi, A. (2013) Traditional Use of Medicinal Plants in South-Central Zimbabwe: Review and Perspectives. Journal of Ethnobiology and Ethnomedicine, 9, Article No. 31. https://doi.org/10.1186/1746-4269-9-31
|
[22]
|
Renu, S.N., Archana, R., Jaswinder, K., Santosh, K. and Fatima, N. (2018) Taxonomy, Phytochemistry, Pharmacology and Traditional Uses of Flueggea virosa (Roxb. ex Willd.) Royle: A Review. International Journal of Life Sciences, 6, 579-585.
|
[23]
|
Choi, S.H., Song, H. and Hwang, J. (2023) Herbal Medicine for External Use in Acute Gouty Arthritis: A PRISMA-Compliant Systematic Review and Meta-Analysis. Medicine, 102, e34936. https://doi.org/10.1097/md.0000000000034936
|
[24]
|
Onyancha, J.M., Gikonyo, N.K., Wachira, S. and Wangui, G.M.M. (2019) An Ethnobotanical Survey of Plants Used for the Treatment and Management of Cancer in Embu County, Kenya. Journal of Medicinal Plants Studies, 7, 39-46. http://dx.doi.org/10.13140/RG.2.2.27409.66408
|
[25]
|
Amri, E. and Kisangau, D.P. (2012) Ethnomedicinal Study of Plants Used in Villages around Kimboza Forest Reserve in Morogoro, Tanzania. Journal of Ethnobiology and Ethnomedicine, 8, 1. https://doi.org/10.1186/1746-4269-8-1
|
[26]
|
Yang, X., Liu, J., Huo, Z., Yuwen, H., Li, Y. and Zhang, Y. (2019) Fluevirines E and F, Two New Alkaloids from Flueggea virosa. Natural Product Research, 34, 2001-2006. https://doi.org/10.1080/14786419.2019.1569661
|
[27]
|
Xie, Q., Zhang, W., Wu, Z., Xu, M., He, Q., Huang, X., et al. (2020) Alkaloid Constituents from the Fruits of Flueggea virosa. Chinese Journal of Natural Medicines, 18, 385-392. https://doi.org/10.1016/s1875-5364(20)30045-5
|
[28]
|
Wang, X.F., Liu, F.F., Zhu, Z., Fang, Q.Q., Qu, S.J., Zhu, W., Yang, L., Zuo, J.P. and Tan, C.H. (2019) Flueggenoids, A. Flueggenoids A-E, New Dinorditerpenoids from Flueggea virosa. Fitoterapia, 133, 96-101.
|
[29]
|
Wang, H., Wang, H., Zhu, Z. and Wang, H. (2020) Complete Plastome Sequence of Flueggea virosa (Roxburgh ex Willdenow) Voigt (Phyllanthaceae): A Medicinal Plant. Mitochondrial DNA Part B, 5, 2650-2651. https://doi.org/10.1080/23802359.2020.1778554
|
[30]
|
Anarado, C.E., Anarado, C.J.O., Umedum, N.L., Chukwubueze, F.M. and Anarado, I.L. (2020) Phytochemical and Antimicrobial Analysis of Leaves of Bridelia micrantha, Cassytha filiformis, Euphorbia hirta and Securinega virosa. Journal of Pharmacognosy and Phytochemistry, 9, 581-587.
|
[31]
|
Ezeonwumelu, J., Matuki, E., Ajayi, A., Okoruwa, A., Tanayen, J., Adiukwu, C., et al. (2013) Phytochemical Screening, Acute Toxicity and Analgesic Properties of Aqueous Extract of Flueggea virosa’s Root in Rats. Ibnosina Journal of Medicine and Biomedical Sciences, 5, 15-21. https://doi.org/10.4103/1947-489x.210519
|
[32]
|
Misonge, O.J., Kamindu, G.N., Wangui, W.S. and Muita, G.M. (2019) An Ethnobotanical Survey of Plants Used for the Treatment and Management of Cancer in Embu County, Kenya. Journal of Medicinal Plants Studies, 7, 39-46. http://dx.doi.org/10.13140/RG.2.2.27409.66408
|
[33]
|
Singh, S.V., Manhas, A., Kumar, Y., Mishra, S., Shanker, K., Khan, F., et al. (2017) Antimalarial Activity and Safety Assessment of Flueggea virosa Leaves and Its Major Constituent with Special Emphasis on Their Mode of Action. Biomedicine & Pharmacotherapy, 89, 761-771. https://doi.org/10.1016/j.biopha.2017.02.056
|
[34]
|
Ajaib, M., Wahla, S.Q., Wahla, U.G., Khan, K.M., Perveen, S. and Shah, S. (2018) Phytochemical Screening and Anthelmintic Activity of Flueggea virosa. Journal of the Chemical Society of Pakistan, 40, 702-706.
|
[35]
|
El‐Hawary, S.S., Mohammed, R., AbouZid, S., Zaki, M.A., Ali, Z.Y., Elwekeel, A., et al. (2021) Antitrypanosomal Activity of New Semi‐Synthetic Bergenin Derivatives. Chemical Biology & Drug Design, 99, 179-186. https://doi.org/10.1111/cbdd.14000
|
[36]
|
Sanon, S., Gansane, A., Ouattara, L.P., Traore, A., Ouedraogo, I.N., Tiono, A., et al. (2013) In Vitro Antiplasmodial and Cytotoxic Properties of Some Medicinal Plants from Western Burkina Faso. African Journal of Laboratory Medicine, 2, a81. https://doi.org/10.4102/ajlm.v2i1.81
|
[37]
|
Tajbakhsh, E., Kwenti, T.E., Kheyri, P., Nezaratizade, S., Lindsay, D.S. and Khame-sipour, F. (2021) Antiplasmodial, Antimalarial Activities and Toxicity of African Medicinal Plants: A Systematic Review of Literature. Malaria Journal, 20, Article No. 349. https://doi.org/10.1186/s12936-021-03866-0
|
[38]
|
Tinnèlo, S., Tidiane, K., Abdoulaye, T., Souleymane, M., Claude, K.A.L. and Adama, C. (2024) Phytochemical Screening and Effects on Spermatogenesis of Extracts from Leaves of Flueggea virosa (Roxb, Ex Willd.) Royle and Heliotropium indicum L., Two Plants Used against Infertility in North of Ivory Cost. The Journal of Phytopharmacology, 13, 37-42. https://doi.org/10.31254/phyto.2024.13106
|
[39]
|
Anel-López, L., Garcia-Alvarez, O., Maroto-Morales, A., Iniesta-Cuerda, M., Ramón, M., Soler, A.J., et al. (2015) Reduced Glutathione Addition Improves Both the Kinematics and Physiological Quality of Post-Thawed Red Deer Sperm. Animal Reproduction Science, 162, 73-79. https://doi.org/10.1016/j.anireprosci.2015.09.012
|
[40]
|
Ariyan, F., Farshad, A. and Rostamzadeh, J. (2021) Protective Effects of Tribulus terrestris and Cinnamomum zeylanicum Extracts and Trehalose Added to Diluents on Goat Epididymal Sperm Freezability. Cryobiology, 98, 172-180. https://doi.org/10.1016/j.cryobiol.2020.11.005
|
[41]
|
Souleymane, H.D., Djibo, A.K., Seyni, S.H., Zakaria, O., Botezatu, A.V., Dinica, R.M., et al. (2023) Phytochemical Characterization and in Vitro Evaluation of the Anti-Sickle Cell Activity of Aqueous and Ethanolic Extracts of Two Medicinal Plants from Niger: Flueggea virosa (Roxb. Ex Willd.) Royle and Kigelia africana (Lam.) Benth. Plants, 12, Article No. 3522. https://doi.org/10.3390/plants12203522
|
[42]
|
Musale, V.M., Mwape, K.E. and Chitanga, S. (2023) The in Vitro Biological Activity Testing of Vitex doniana Bark Extract Anf Flueggea virosa Root Extract against Taenia solium Metacestodes. University of Zambia Journal of Agricultural and Biomedical Sciences, 7, 26-33. https://doi.org/10.53974/unza.jabs.7.4.1194
|
[43]
|
Oghenemaro, E.F., Oise, I.E. and Cynthia, D. (2021) The Effects of Securinega virosa Leaves on Methicillin-Resistant Staphylococcus aureus (MRSA). International Journal of Pharmaceutical Research and Allied Sciences, 10, 29-34.
|
[44]
|
Bunte, K., Hensel, A. and Beikler, T. (2019) Polyphenols in the Prevention and Treatment of Periodontal Disease: A Systematic Review of in Vivo, ex Vivo and in Vitro Studies. Fitoterapia, 132, 30-39. https://doi.org/10.1016/j.fitote.2018.11.012
|
[45]
|
Amenu, J.D., Neglo, D. and Abaye, D.A. (2019) Comparative Study of the Antioxidant and Antimicrobial Activities of Compounds Isolated from Solvent Extracts of the Roots of Securinega virosa. Journal of Biosciences and Medicines, 7, 27-41. https://doi.org/10.4236/jbm.2019.78003
|
[46]
|
Zhang, H., Zhang, C., Han, Y., Wainberg, M.A. and Yue, J. (2015) New Securinega Alkaloids with Anti-HIV Activity from Flueggea virosa. RSC Advances, 5, 107045-107053. https://doi.org/10.1039/c5ra22191a
|
[47]
|
Zhang, H., Han, Y., Wainberg, M.A. and Yue, J. (2015) Anti-HIV Securinega Alkaloid Oligomers from Flueggea virosa. Tetrahedron, 71, 3671-3679. https://doi.org/10.1016/j.tet.2014.10.064
|
[48]
|
Olaleye, T., Muse, W.A., Imeh-Nathaniel, A. and Nathaniel, T.I. (2017) Biological Effects of Petiveria alliacea and Flueggae virosa on the Life Cycle of a Disease Vector (Musca domestica). International Journal of Pure and Applied Zoology, 5, 45-51. https://www.alliedacademies.org/articles/biological-effects-of-petiveria-alliacea-and-flueggae-virosa-on-the-life-cycle-of-a-disease-vector-musca-domestica.pdf
|
[49]
|
Zengin, G., Dall’Acqua, S., Sinan, K.I., Uba, A.I., Sut, S., Peron, G., et al. (2022) Gathering Scientific Evidence for a New Bioactive Natural Ingredient: The Combination between Chemical Profiles and Biological Activities of Flueggea virosa Extracts. Food Bioscience, 49, Article ID: 101967. https://doi.org/10.1016/j.fbio.2022.101967
|
[50]
|
Zhang, D.B., Song, Z.X. and Tang, Z.S. (2018) Studies on Alkaloids from the Leaves of Flueggea virosa and Their Acetylcholinesterase Inhibitory Activities. Journal of Chinese Medicinal Materials, 41, 99-102.
|
[51]
|
Al-Rehaily, A.J., Yousaf, M., Ahmad, M.S., Samoylenko, V., Li, X., Muhammad, I., et al. (2015) Chemical and Biological Study of Flueggea virosa Native to Saudi Arabia. Chemistry of Natural Compounds, 51, 187-188. https://doi.org/10.1007/s10600-015-1240-9
|
[52]
|
Ji, Y.J., Wen, C.Q., Chen, A.H., Qiao, L.F., Li, X.B. and Liu, Y.P. (2015) Studies on the Chemical Constituents from Stems and Leaves of Flueggea virosa (II). Guangdong Chemical Industry, 42, 67-68.
|
[53]
|
Yang, X. (2019) Investigation on the Structure and Activity of Alkaloids in Flueggea virosa. Master Thesis, Guizhou University.
|
[54]
|
Luo, X., Cai, J., Yin, Z., Luo, P., Li, C., Ma, H., et al. (2018) Fluvirosaones A and B, Two Indolizidine Alkaloids with a Pentacyclic Skeleton from Flueggea virosa. Organic Letters, 20, 991-994. https://doi.org/10.1021/acs.orglett.7b03935
|
[55]
|
Wang, A.T. (2016) Alkaloids from the Fruits of Flueggea virosa. Master Thesis, Ji-nan University.
|
[56]
|
Li, X., Cao, M., Zhang, Y., Li, S., Di, Y. and Hao, X. (2014) Fluevirines A-D, Four New Securinega-Type Alkaloids from Flueggea virosa. Tetrahedron Letters, 55, 6101-6104. https://doi.org/10.1016/j.tetlet.2014.09.046
|
[57]
|
Xu, M.T. (2018) Alkaloids from the Fruits of Flueggea virosa. Master Thesis, Jinan University.
|
[58]
|
Wang, G., Wang, A., Zhao, B., Lei, X., Zhang, D., Jiang, R., et al. (2016) Norsecurinamines A and B, Two Norsecurinine-Derived Alkaloid Dimers from the Fruits of Flueggea virosa. Tetrahedron Letters, 57, 3810-3813. https://doi.org/10.1016/j.tetlet.2016.06.113
|
[59]
|
Zhang, H., Zhu, K., Han, Y., Luo, C., Wainberg, M.A. and Yue, J. (2015) Flueggether A and Virosinine A, Anti-HIV Alkaloids from Flueggea virosa. Organic Letters, 17, 6274-6277. https://doi.org/10.1021/acs.orglett.5b03320
|
[60]
|
Zhao, B., Wang, Y., Zhang, D., Huang, X., Bai, L., Yan, Y., et al. (2012) Virosaines A and B, Two New Birdcage-Shaped Securinega Alkaloids with an Unprecedented Skeleton from Flueggea virosa. Organic Letters, 14, 3096-3099. https://doi.org/10.1021/ol301184j
|
[61]
|
Li, W.Y. (2021) Studies on the Chemical Constituents of Flueggea virosa. Master Thesis, Yunnan Normal University.
|
[62]
|
Zhang, H., Zhu, K., Gao, X. and Yue, J. (2017) Natural Occurrence of All Eight Stereoisomers of a Neosecurinane Structure from Flueggea virosa. Tetrahedron, 73, 4692-4697. https://doi.org/10.1016/j.tet.2017.06.035
|
[63]
|
Hou, W., Huang, H., Wu, X.Q. and Lan, J.X. (2023) Bioactivities and Mechanism of Action of Securinega Alkaloids Derivatives Reported Prior to 2022. Biomedicine Pharmacotherapy, 158, Article ID: 114190. https://doi.org/10.1016/j.biopha.2022.114190
|
[64]
|
Zhang, D.B. (2015) Studies on the Structures and Bioactivities of Alkaloids from Four Medical Plants. Master Thesis, Lanzhou University.
|
[65]
|
Zhao, B., Wang, Y., Li, C., Wang, G., Huang, X., Fan, C., et al. (2013) Flueggedine, A Novel Axisymmetric Indolizidine Alkaloid Dimer from Flueggea virosa. Tetrahedron Letters, 54, 4708-4711. https://doi.org/10.1016/j.tetlet.2013.06.097
|
[66]
|
Zhang, H., Wei, W. and Yue, J. (2013) From Monomer to Tetramer and Beyond: The Intriguing Chemistry of Securinega Alkaloids from Flueggea virosa. Tetrahedron, 69, 3942-3946. https://doi.org/10.1016/j.tet.2013.03.028
|
[67]
|
Zhang, H., Han, Y., Wainberg, M.A. and Yue, J. (2016) Flueggethers B-D, Securinega Alkaloids with Rare Oligomerizing Pattern from Flueggea virosa. Tetrahedron Letters, 57, 1798-1800. https://doi.org/10.1016/j.tetlet.2016.03.034
|
[68]
|
Zhang, H., Zhang, C.R., Zhu, K.K., Gao, A.H., Luo, C., Li, J. and Yue, J.M. (2013) Fluevirosines A-C: A Biogenesis Inspired Example in the Discovery of New Bioactive Scaffolds from Flueggea virosa. Organic Letters, 15, 120-123.
|
[69]
|
Adamski, Z., Blythe, L.L., Milella, L. and Bufo, S.A. (2020) Biological Activities of Alkaloids: From Toxicology to Pharmacology. Toxins, 12, Article No. 210. https://doi.org/10.3390/toxins12040210
|
[70]
|
Ng, Y.P., Or, T.C.T. and Ip, N.Y. (2015) Plant Alkaloids as Drug Leads for Alzheimer’s Disease. Neurochemistry International, 89, 260-270. https://doi.org/10.1016/j.neuint.2015.07.018
|
[71]
|
Aryal, B., Raut, B.K., Bhattarai, S., Bhandari, S., Tandan, P., Gyawali, K., et al. (2022) Potential Therapeutic Applications of Plant-Derived Alkaloids against Inflammatory and Neurodegenerative Diseases. Evidence-Based Complementary and Alternative Medicine, 2022, Article ID: 7299778. https://doi.org/10.1155/2022/7299778
|
[72]
|
Chao, C., Cheng, J., Shen, D. and Wu, T. (2014) Anti-Hepatitis C Virus Dinorditerpenes from the Roots of Flueggea virosa. Journal of Natural Products, 77, 22-28. https://doi.org/10.1021/np400528h
|
[73]
|
Chao, C., Cheng, J., Shen, D., Huang, H., Wu, Y. and Wu, T. (2016) Terpenoids from Flueggea virosa and Their Anti-Hepatitis C Virus Activity. Phytochemistry, 128, 60-70. https://doi.org/10.1016/j.phytochem.2016.04.003
|
[74]
|
Chao, C., Cheng, J., Shen, D., Huang, H., Wu, Y. and Wu, T. (2016) 13-Methyl-3,4-seco-ent-podocarpanes, Rare C18-Diterpenoids from the Roots of Flueggea virosa. RSC Advances, 6, 34708-34714. https://doi.org/10.1039/c6ra00843g
|
[75]
|
Chao, C., Cheng, J., Hwang, T., Shen, D. and Wu, T. (2014) Trinorditerpenes from the Roots of Flueggea virosa. Bioorganic & Medicinal Chemistry Letters, 24, 447-449. https://doi.org/10.1016/j.bmcl.2013.12.051
|
[76]
|
Liu, Y.P., Chen, A.H., Qiao, L.F., Wen, C.Q., Xu, X.Y. and Fu, Y.H. (2015) Studies on the Chemical Constituents from Stems and Leaves of Flueggea virosa. Guangdong Chemical Industry, 42, 12-13.
|
[77]
|
Chao, C.H., Lin, Y.J., Cheng, J.C., Huang, H.C., Yeh, Y.J., Wu, T.S., Hwang, S.Y. and Wu, Y.C. (2016) Chemical Constituents from Flueggea virosa and the Structural Revision of Dehydrochebulic Acid Trimethyl Ester. Molecules, 21, 1239-1246. https://doi.org/10.3390/molecules21091239
|
[78]
|
Agber, C.T., Tor-Anyii, T.A., Igoli, J.O. and Anyam, J.V. (2020) Isolation and Characterisation of Bergenin from Ethyl Acetate Extract of Flueggea virosa Leaves. Journal of Chemical Society of Nigeria, 45, 1042-1047. https://doi.org/10.46602/jcsn.v45i6.559
|
[79]
|
Stromsnes, K., Lagzdina, R., Olaso-Gonzalez, G., Gimeno-Mallench, L. and Gambini, J. (2021) Pharmacological Properties of Polyphenols: Bioavailability, Mechanisms of Action, and Biological Effects in in Vitro Studies, Animal Models, and Humans. Biomedicines, 9, Article No. 1074. https://doi.org/10.3390/biomedicines9081074
|
[80]
|
de Araújo, F.F., de Paulo Farias, D., Neri-Numa, I.A. and Pastore, G.M. (2021) Polyphenols and Their Applications: An Approach in Food Chemistry and Innovation Potential. Food Chemistry, 338, Article ID: 127535. https://doi.org/10.1016/j.foodchem.2020.127535
|
[81]
|
Agunloye, O.M., Oboh, G., Ademiluyi, A.O., Ademosun, A.O., Akindahunsi, A.A., Oyagbemi, A.A., et al. (2019) Cardio-Protective and Antioxidant Properties of Caffeic Acid and Chlorogenic Acid: Mechanistic Role of Angiotensin Converting Enzyme, Cholinesterase and Arginase Activities in Cyclosporine Induced Hypertensive Rats. Biomedicine & Pharmacotherapy, 109, 450-458. https://doi.org/10.1016/j.biopha.2018.10.044
|
[82]
|
Sun, W. and Shahrajabian, M.H. (2023) Therapeutic Potential of Phenolic Compounds in Medicinal Plants—Natural Health Products for Human Health. Molecules, 28, Article No. 1845. https://doi.org/10.3390/molecules28041845
|
[83]
|
Addepalli, V. and Suryavanshi, S.V. (2018) Catechin Attenuates Diabetic Autonomic Neuropathy in Streptozotocin Induced Diabetic Rats. Biomedicine & Pharmacotherapy, 108, 1517-1523. https://doi.org/10.1016/j.biopha.2018.09.179
|
[84]
|
Farias, D.d.P., de Araújo, F.F., Neri-Numa, I.A. and Pastore, G.M. (2019) Prebiotics: Trends in Food, Health and Technological Applications. Trends in Food Science & Technology, 93, 23-35. https://doi.org/10.1016/j.tifs.2019.09.004
|
[85]
|
Hajam, Y.A., Rai, S., Kumar, R., Bashir, M. and Malik, J.A. (2020) Phenolic Compounds from Medicinal Herbs: Their Role in Animal Health and Diseases—A New Approach for Sustainable Welfare and Development. In: Lone, R., Shuab, R. and Kamili, A., Eds., Plant Phenolics in Sustainable Agriculture, Springer, 221-239. https://doi.org/10.1007/978-981-15-4890-1_10
|
[86]
|
Garg, S.K., Shukla, A. and Choudhury, S. (2019) Polyphenols and Flavonoids. In: Gupta, R., Srivastava, A. and Lall, R., Eds., Nutraceuticals in Veterinary Medicine, Springer International Publishing, 187-204. https://doi.org/10.1007/978-3-030-04624-8_13
|
[87]
|
Panche, A.N., Diwan, A.D. and Chandra, S.R. (2016) Flavonoids: An Overview. Journal of Nutritional Science, 5, e47. https://doi.org/10.1017/jns.2016.41
|
[88]
|
Lee, Y.J., Han, B.H., Yoon, J.J., Kim, H.Y., Ahn, Y.M., Hong, M.H., et al. (2021) Identification of Securinine as Vascular Protective Agent Targeting Atherosclerosis in Vascular Endothelial Cells, Smooth Muscle Cells, and Apolipoprotein E Deficient Mice. Phytomedicine, 81, Article ID: 153430. https://doi.org/10.1016/j.phymed.2020.153430
|
[89]
|
Leonoudakis, D., Rane, A., Angeli, S., Lithgow, G.J., Andersen, J.K. and Chinta, S.J. (2017) Anti-Inflammatory and Neuroprotective Role of Natural Product Securinine in Activated Glial Cells: Implications for Parkinson’s Disease. Mediators of Inflammation, 2017, Article ID: 8302636. https://doi.org/10.1155/2017/8302636
|