TITLE:
Assessing the Effects of Anaerobic Co-Digestion with FOG and Food Waste Residuals on Biogas Production
AUTHORS:
Sumaiya Sharmin, Daniel E. Meeroff, Lusnel Ferdinand, Frederick Bloetscher, Masoud Jahandar Lashaki
KEYWORDS:
High-Strength Organic Waste, Fats, Oils, and Grease, Co-Digestion Economic Analysis Tool
JOURNAL NAME:
Journal of Environmental Protection,
Vol.16 No.2,
February
28,
2025
ABSTRACT: As global populations grow, the generation of various waste materials like fats, oils, and grease (FOG), fruit waste, and other perishable wastes increases concurrently. Disposal of these highly putrescible waste products in landfills consumes valuable landfill space. Anaerobic digestion can transform these waste materials into valuable components, including fertilizer and biogas, reducing the demand for landfill space. The current study is based on the hypothesis that incorporating high-strength organic waste into conventional wastewater sludge can enhance the production of onsite biogas at wastewater treatment plants, therefore contributing to the reduction of the plant’s energy demands from the grid. The batch anaerobic biodegradability test assays were performed for 63 days to observe the impact on the biomethane yield from adding high-strength organic waste to the wastewater sludge and to investigate the combined effects of co-digesting two different preselected high-strength organic waste streams. Additionally, physicochemical characterization was performed on different fruit waste juicing residuals to indicate which fruit wastes might increase anaerobic digestion efficiency. The highest methane yield of 243 mL/gVS and 280 mL/gVS, respectively, were obtained with two mixtures having 10% FOG as the sole substrate and 10% FOG along with 10% fruit waste. The study also assessed the siloxane concentrations present as trace contaminants in the biogas samples. An initial economic feasibility assessment of food waste co-digestion at two wastewater treatment plants in Florida was conducted using the Co-Digestion Economic Analysis Tool (CoEAT) model. Based on the laboratory results, the analysis indicated a net positive benefit of $39,472 for a medium-sized plant (10 - 30 MGD capacity) and $52,488 for a larger plant (>30 MGD capacity) after 15 years, while diverting 10 - 18 tons/day of food waste from landfills with an anticipated minimal increase in sludge volume production at food waste additions less than 10% of the digester feed as stated in the literature.