TITLE:
The Potential of Energy-Based RBM and xLSTM for Real-Time Predictive Analytics in Credit Card Fraud Detection
AUTHORS:
Peyman Baghdadi, Serdar Korukoglu, Mehmet Ali Bilici, Aytug Onan
KEYWORDS:
Deep Learning, Credit Card Fraud Detection, Energy-Based RBM, xLSTM, European Cardholder Dataset
JOURNAL NAME:
Journal of Data Analysis and Information Processing,
Vol.13 No.1,
February
25,
2025
ABSTRACT: The rapid growth of technology impacts all aspects of modern life, including banking and financial transactions. While these industries benefit significantly from technological advancements, they also face challenges such as credit card fraud, the most prevalent type of financial fraud. Each year, such fraud leads to billions of dollars in losses for banks, financial institutions, and customers. Although many machine learning (ML) and, more recently, deep learning (DL) solutions have been developed to address this issue, most fail to strike an effective balance between speed and performance. Moreover, the reluctance of financial institutions to disclose their fraud datasets due to reputational risks adds further challenges. This study proposes a predictive model for credit card fraud detection that leverages the unique strengths of Energy-based Restricted Boltzmann Machines (EB-RBM) and Extended Long Short-Term Memory (xLSTM) models. EB-RBM is utilized for its ability to detect new and previously unseen fraudulent patterns, while xLSTM focuses on identifying known fraud types. These models are integrated using an ensemble approach to combine their strengths, achieving a balanced and reliable prediction system. The ensemble employs a bootstrap max-voting mechanism, assigning equal voting rights to EB-RBM and xLSTM, followed by result normalization and aggregation to classify transactions as fraudulent or genuine. The model’s performance is evaluated using metrics such as AUC-ROC, AUC-PR, precision, recall, F1-score, confusion matrix, and elapsed time. Experimental results on a real-world European cardholder dataset demonstrate that the proposed approach effectively balances speed and performance, outperforming recent models in the field.