TITLE:
MMGCF: Generating Counterfactual Explanations for Molecular Property Prediction via Motif Rebuild
AUTHORS:
Xiuping Zhang, Qun Liu, Rui Han
KEYWORDS:
Interpretability, Causal Relationship, Counterfactual Explanation, Molecular Graph Generation
JOURNAL NAME:
Journal of Computer and Communications,
Vol.13 No.1,
January
31,
2025
ABSTRACT: Predicting molecular properties is essential for advancing for advancing drug discovery and design. Recently, Graph Neural Networks (GNNs) have gained prominence due to their ability to capture the complex structural and relational information inherent in molecular graphs. Despite their effectiveness, the “black-box” nature of GNNs remains a significant obstacle to their widespread adoption in chemistry, as it hinders interpretability and trust. In this context, several explanation methods based on factual reasoning have emerged. These methods aim to interpret the predictions made by GNNs by analyzing the key features contributing to the prediction. However, these approaches fail to answer critical questions: “How to ensure that the structure-property mapping learned by GNNs is consistent with established domain knowledge”. In this paper, we propose MMGCF, a novel counterfactual explanation framework designed specifically for the prediction of GNN-based molecular properties. MMGCF constructs a hierarchical tree structure on molecular motifs, enabling the systematic generation of counterfactuals through motif perturbations. This framework identifies causally significant motifs and elucidates their impact on model predictions, offering insights into the relationship between structural modifications and predicted properties. Our method demonstrates its effectiveness through comprehensive quantitative and qualitative evaluations of four real-world molecular datasets.