Article citationsMore>>
Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P. W., Trisos, C., Romero, J., Aldunce, P., Barrett, K., Blanco, G., Cheung, W. W. L., Connors, S., Denton, F., Diongue-Niang, A., Dodman, D., Garschagen, M., Geden, O., Hayward, B., Jones, C., Péan, C. et al. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Intergovernmental Panel on Climate Change.
https://doi.org/10.59327/IPCC/AR6-9789291691647
has been cited by the following article:
-
TITLE:
Carbon Dioxide (CO2) Mineralization in Solid Waste-Based Grouting Slurry: A Review
AUTHORS:
Safiwu Alhaji, Baobin Gao, Wenjie Zhu, Kaihang Liu
KEYWORDS:
Solid Waste-Based Slurry, Mineral Carbonation, CO2 Sequestration, Global Warming, CCUS
JOURNAL NAME:
Journal of Geoscience and Environment Protection,
Vol.13 No.1,
January
20,
2025
ABSTRACT: Carbon dioxide (CO2) is a substantial contributor to global warming owing to its long atmospheric lifetime and high potential for global warming. It is related to the processes of raw material mining and industry, which is fundamental to economic development but also has negative impacts on the environment, namely the increase of global temperature and solid waste. To address this, various carbon capture, storage, utilization, and mineralization methods have emerged, but they remain at an early stage of development. This review discusses the applicability of solid waste materials, and slurry form in particular, for CO2 mineralization. It analyzes frequently researched materials, carbonation capabilities, reaction mechanisms, and industrial uses. Industrial waste materials, cement, and demolition waste are widely used in carbonation reactions because of their abundance and high Ca/Mg oxide content. The review also discusses carbonation types, including two major types—direct and indirect—which fall under the ex-situ category. The key factors influencing the carbonation efficiency include the CO2 concentration, temperature, pressure, particle size, and reaction chamber type. The construction sector is the principal beneficiary of carbonated materials due to the cementitious characteristics of recarbonated byproducts and precipitated calcium carbonate (PCC). Other industries, such as paper, plastics, and pharmaceuticals, also find applications for PCC. Future research is recommended to explore new materials for slurry carbonation, with potential applications in underground mine support for carbon sequestration and subsidence control.