TITLE:
Identification of Commercial Forest Tree Species Using Sentinel 2 and Planet Scope Imageries in the Usutu Forest, Eswatini
AUTHORS:
Thokozani Maxwell Ginindza
KEYWORDS:
Sentinel-2, PlanetScope, Random Forest, Support Vector Machine, Sugarcane, Genus, Species, Remote Sensing
JOURNAL NAME:
Journal of Geographic Information System,
Vol.17 No.1,
January
16,
2025
ABSTRACT: Making the distinction between different plantation tree species is crucial for creating reliable and trustworthy information, which is critical in forestry administration and upkeep. Over the years, forest delineation and mapping have been done using the conventional techniques, such as the utilization of ground truth facts together with orthophotos. These techniques have been proven to be very precise, but they are expensive, cumbersome, and challenging to employ in remote regions. To resolve this shortfall, this research investigates the potential of data from the commercial, PlanetScope CubeSat and the freely available, Sentinel 2 data from Copernicus to discriminate commercial forest tree species in the Usutu Forest, Eswatini. Two approaches for image classification, Random Forest (RF) and the Support Vector Machine (SVM) were investigated at different levels of the forest database classification which is the genus (family of tree species) and species levels. The result of the study indicates that, the Sentinel 2 images had the highest species classification accuracy compared to the PlanetScope image. Both classification methods achieved a 94% maximum OA and 0.90 kappa value at the genus level with the Sentinel 2 imagery. At the species level, the Sentinel 2 imagery again showed highly acceptable results with the SVM method, with an OA of 82%. The PlanetScope images performed badly with less than 64% OA for both RF and SVM at the genus level and poorer at the species level with a low OA figure, 47% and 53% for the SVM and RF respectively. Our results suggest that the freely available Sentinel 2 data together with the SVM method has a high potential for identifying differences between commercial tree species than the PlanetScope. The study uncovered that both classification methods are highly capable of classifying species under the gum genus group (esmi, egxu, and egxn) using both imageries. However, it was difficult to separate species types under the pine genus group, particularly discriminating the hybrid species such as pech and pell since pech is a hybrid species for pell.