TITLE:
Prospective Study and Physico-Mechanical Characterisation of Granular Materials Used in the Manufacture of Ordinary Concrete in Congo
AUTHORS:
Jarlon Brunel Makela, Bienvenu Ebata-Ndion, Narcisse Malanda, Stanislas Kevin Mbeke
KEYWORDS:
Sand, Gravel, Cement, Formulation, Identification, Concrete, Physical-Mechanical Properties
JOURNAL NAME:
Geomaterials,
Vol.15 No.1,
October
31,
2024
ABSTRACT: This research is an experimental study aimed at identifying and determining the physico-mechanical properties of various granular materials used in current concretes based on local aggregates (sands, gravels) from different quarries, highlighting their intrinsic properties. The aim was also to test their specific influence on the cementitious matrix of hardened concrete. Several laboratory tests were conducted on samples from Brazzaville and Pointe-Noire. To develop a variety of concrete formulations meeting rheological criteria (deformability, bleeding, segregation) and create an optimal concrete formulation approach considering its microstructural and compacting matrix, a good granular distribution was planned, using two types of sand (rolled and crushed). This involved correcting the rolled sand with variable proportions (30% to 50%) of crushed sand. The results from the eight concrete formulations studied, using the Dreux-Gorisse method, showed that six formulations produced the expected results. Compressive strengths at 28 days ranged from 25 to 36.75 MPa. As a result, formulation 3 appears to be the best, with a mechanical strength of 36.75 MPa at 28 days, compared to formulation 1 (33.75 MPa), formulation 4 (27.25 MPa), and formulation 2 (26.65 MPa) for the Brazzaville locality. For the Pointe-Noire locality, formulation 8 was judged the best, with a characteristic mechanical strength of 29.70 MPa at 28 days, followed by formulation 7 (27.30 MPa), formulation 5 (22.80 MPa), and formulation 6 (18.30 MPa). In summary, the concretes formulated with raw sand showed better results than those with improved sands. The same was true for concrete formulations using rolled sand and gravel.