TITLE:
Antimicrobial and Antioxidant Activities of a Brown Wood Rotting Mushroom Piptoporellus baudonii from Benin (Tropical Africa)
AUTHORS:
Olyvia Gwladys Fadeyi, Boris Armel Olou, Roland Tchuenteu Tchuenguem, Bienvenu Tsakem, Pierre Valery Kemdoum Sinda, Rémy Bertrand Teponno, Léon Azefack Tapondjou, Jean Paul Dzoyem, Nourou Soulemane Yorou
KEYWORDS:
Fungi, Piptoporellus baudonii, Antimicrobial Activity, Antioxidant Activity, DNA Extraction, Benin
JOURNAL NAME:
Advances in Biological Chemistry,
Vol.14 No.5,
October
31,
2024
ABSTRACT: Piptoporellus baudonii, previously known as Laetiporus baudonii, is an African species that was considered to be a sister species to Laetiporus sulphureus, another European species known for its medicinal value. While much is known about the edibility and antimicrobial properties of L. sulphureus, African species like P. baudonii remain understudied. This study investigated the antimicrobial and antioxidant properties of P. baudonii extracts (powder maceration) prepared using ethanol, methanol and water with fractions obtained via differential solubility in hexane, ethyl acetate and n-butanol. Before the antimicrobial analysis, the study material was accurately identified using both morphology and molecular techniques. Antimicrobial activity was tested against fungi, gram-positive, and gram-negative bacteria using a broth serial microdilution method, while antioxidant activity was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Ferric Reducing Antioxidant Power FRAP methods. Phylogenetic analysis confirmed the specimen as P. baudonii, with genetic material from Benin grouping it with other P. baudonii from Tanzania and other unknown regions, forming a well-supported clade (100/100). The ethanol (1.71), methanol (2.41) extracts, along with ethyl acetate (1.36), n-butanol (1.18), and hexane (12.91) fractions showed significant antioxidant activity with EC50 values below 20 µg∙mL−1. The highest antimicrobial inhibition was seen in the n-butanol (58%) and ethyl acetate (54%) fractions, followed by ethanol (49%) and hexane (48%). Methanol exhibited the lowest inhibition (46.10%). These values were compared to the standard (Vitamin C). The examined extracts demonstrated high bactericidal properties, with an MBC/MIC ratio (R) of 1 to 4, particularly effective ethyl acetate against Escherichia coli (R = 2) and ethanol extract with strong activity against Enterococcus faecalis (R = 4). Further chemical and cytotoxicity studies are warranted to fully explore the pharmaceutical potential of P. baudonii.