TITLE:
A New Theory Exploring the Internal Structure of Quarks
AUTHORS:
Nader Butto
KEYWORDS:
Quark, Vortex, Proton, Superfluid Vacuum, Quantum Chromodynamics (QCD), Gluon, Strong Force
JOURNAL NAME:
Journal of High Energy Physics, Gravitation and Cosmology,
Vol.10 No.4,
October
16,
2024
ABSTRACT: This paper introduces a novel theoretical model that reimagines the internal structure of quarks as superfluid vortices formed during the Quark Epoch of the Big Bang. The proposed theory challenges the traditional view of quarks as point-like entities without internal structure, offering instead a hydrodynamic perspective that aligns with the principles of quantum chromodynamics (QCD). By considering quarks as vortices in a frictionless superfluid vacuum, the model provides new insights into their mass, charge, spin, and interactions. The formalism presented in this work utilizes hydrodynamic principles to model quarks as irrotational circular vortices, calculating key properties such as charge radius, mass, and density. The calculations are grounded in the application of vortex dynamics, including the evaluation of circulation, vorticity, and the balance of forces within the quantum fluid. The resulting quark radius and mass are shown to be consistent with known experimental ranges, providing a strong validation of the vortex-based formalism. The theory also explores the implications of this vortex model on the stability of quarks within protons and neutrons, and how quark-antiquark pairs (mesons) and three-quark structures (baryons) can be understood as interactions between these vortices. Additionally, the model predicts specific quark properties such as charge radius and density, which are consistent with experimental observations and current understandings of subatomic particle physics. Furthermore, this approach elucidates the strong force’s role as an interaction between these vortices, mediated by gluons in the quantum fluid. The proposed model not only aligns with existing experimental data but also paves the way for further exploration into the complex behaviors of quarks and their role in the fundamental structure of matter.