Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
H. K. Khalil, “Nonlinear Systems,” Third Edition, Publish House of Electronics Industry, Beijing, 2007.
has been cited by the following article:
TITLE: Chaos Synchronization of Uncertain Lorenz System via Single State Variable Feedback
AUTHORS: Fengxiang Chen, Tong Zhang
KEYWORDS: Uncertain Lorenz System; Single State Variable; Chaos Synchronization
JOURNAL NAME: Applied Mathematics, Vol.4 No.11B, November 7, 2013
ABSTRACT: This paper treats the problem of chaos synchronization for uncertain Lorenz system via single state variable information of the master system. By the Lyapunov stability theory and adaptive technique, the derived controller is featured as follows: 1) only single state variable information of the master system is needed; 2) chaos synchronization can also be achieved even if the perturbation is occurred in some parameters of the master chaotic system. Finally, the effectiveness of the proposed controllers is also illustrated by the simulations as well as rigorous mathematical proofs.
Related Articles:
A New Newton-Type Method with Third-Order for Solving Systems of Nonlinear Equations
Zhongli Liu, Quanyou Fang
DOI: 10.4236/jamp.2015.310154 2,003 Downloads 2,506 Views Citations
Pub. Date: October 28, 2015
The Simulating of Power Electronics Systems with the Use of Explicit Numerical Schemes
Yuri Tanovitski, Gennady Kobzev
DOI: 10.4236/am.2013.41A034 3,982 Downloads 6,085 Views Citations
Pub. Date: January 30, 2013
Power Electronics and Its Application to Solar Photovoltaic Systems in India
Nishij Ganpatrao Kulkarni, Vasudeo Bapuji Virulkar
DOI: 10.4236/epe.2016.82007 6,502 Downloads 8,490 Views Citations
Pub. Date: February 16, 2016
A Research on Dynamic System of Innovation and Development of Commerce Industry in Tongzhou District of Beijing
Shuai Liu
DOI: 10.4236/ajibm.2016.611100 1,168 Downloads 1,613 Views Citations
Pub. Date: November 22, 2016
A Study of the Influencing Factors of the Export Trade of Beijing’s Cultural Creativity Industry
Jishun Niu
DOI: 10.4236/ajibm.2017.71006 1,488 Downloads 2,181 Views Citations
Pub. Date: January 24, 2017