Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
F. L. Li, X. Y. Hu and L. Zhang, “The Generalized Anti-Reflexive Solution for a Class of Matrix Equations (BX = C, XD = E),” Computational & Applied Mathematics, Vol. 1, No. 27, 2008, pp. 31-46.
has been cited by the following article:
TITLE: Least Squares Symmetrizable Solutions for a Class of Matrix Equations
AUTHORS: Fanliang Li
KEYWORDS: Matrix Equations; Matrix Row Stacking; Topological Isomorphism; Least Squares Solution; Optimal Approximation
JOURNAL NAME: Applied Mathematics, Vol.4 No.5, May 13, 2013
ABSTRACT: In this paper, we discuss least squares symmetrizable solutions of matrix equations (AX = B, XC = D) and its optimal approximation solution. With the matrix row stacking, Kronecker product and special relations between two linear subspaces are topological isomorphism, and we derive the general solutions of least squares problem. With the invariance of the Frobenius norm under orthogonal transformations, we obtain the unique solution of optimal approximation problem. In addition, we present an algorithm and numerical experiment to obtain the optimal approximation solution.
Related Articles:
Erratum to “The Faraday Isolator, Detailed Balance and the Second Law” [Journal of Applied Mathematics and Physics, Vol. 5, No. 4, April 2017 PP. 889-899]
George S. Levy
DOI: 10.4236/jamp.2017.58127 1,441 Downloads 2,776 Views Citations
Pub. Date: August 25, 2017
Lévy Flights, 1/f Noise and Self Organized Criticality
Oliver López Corona, Pablo Padilla, Oscar Escolero, Alejandro Frank, Ruben Fossion
DOI: 10.4236/jmp.2013.43046 4,380 Downloads 7,583 Views Citations
Pub. Date: March 8, 2013
Dykstra’s Algorithm for the Optimal Approximate Symmetric Positive Semidefinite Solution of a Class of Matrix Equations
Chunmei Li, Xuefeng Duan, Zhuling Jiang
DOI: 10.4236/alamt.2016.61001 2,541 Downloads 3,019 Views Citations
Pub. Date: March 7, 2016
EPr Solution to a System of Matrix Equations
Changzhou Dong, Yuping Zhang, Jianmin Song
DOI: 10.4236/alamt.2013.34010 3,289 Downloads 6,600 Views Citations
Pub. Date: December 19, 2013
Comment on the Paper “Condom-Assisted Transurethral Resection: A New Surgical Technique for Urethral Tumor”, Surgical Science, Vol. 1, 2010, pp. 46-48
Guven Aslan
DOI: 10.4236/ss.2011.24042 4,535 Downloads 7,500 Views Citations
Pub. Date: June 23, 2011