Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

I. A. Csiszar, J. T. Morisette and L. Giglio, “Validation of Active Fire Detection from Moderate-Resolution Satellite Sensors: The MODIS Example in Northern Eurasia,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 7, 2006, pp. 1757-1764. doi:10.1109/TGRS. 2006.875941

has been cited by the following article:

  • TITLE: GOSAT CH4 and CO2, MODIS Evapotranspiration on the Northern Hemisphere June and July 2009, 2010 and 2011

    AUTHORS: Reginald R. Muskett

    KEYWORDS: GOSAT; CH4 ; CO2; MODIS; Evapotranspiration; Wildfire

    JOURNAL NAME: Atmospheric and Climate Sciences, Vol.3 No.2, April 30, 2013

    ABSTRACT: The Greenhouse gases Observing Satellite (GOSAT) affords an ability to assess and monitor CH4 and CO2 near-surface atmospheric concentrations globally on monthly scales pertaining to biogeochemical cycles and anthropogenic emissions. In addition to GOSAT our investigation incorporates global-monthly estimates of evapotranspiration (ET) from the Moderate Resolution Spectroradiometer (MODIS) and fire/wildfire locations for correspondence and comparison. We restrict the investigation to the months of June and July in years 2009, 2010 and 2011. After processing and assessment on the northern hemisphere we focus on two regions in Eurasia for interrogation: 40? to 80?E by 50? to 58?N and 100? to 140?E by 50? to 58?N. The regions allow for contrasting regional settings, an agricultural-industrial-urban west-region to a boreal-steppe discontinuous permafrost zone palsa and thaw lake east-region. Joint probability density functions allow us to identify significant modes, the highest probable values of background levels of CH4 and CO2 to ET and develop regressions for correlated relationships. We found that background levels of CH4, CO2 and ET were not affected by the wildfires of 2010. Regressions indicate significant inverse relationships of CH4 and CO2 to ET in the west-region and no significant relationships in the east-region. The east-region shows significantly higher background levels of CH4, CO2 and ET owing to the heterogeneity of ecosystems, hydrology, physical processes and terrain in the discontinuous permafrost zone of the central Siberian Plateau.