Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

M. H. M. Hassan and J. D. Way, “Gas Transport in A Microporous Silica Membrane,” SPE Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, 13-16 October 1996, pp. 2-3. doi:10.2118/36226-MS

has been cited by the following article:

  • TITLE: Seepage Mechanism and Transient Pressure Analysis of Shale Gas

    AUTHORS: Xiao Guo, Weifeng Wang

    KEYWORDS: Shale Gas; Seepage Mechanism; Mathematical Model; Knudsen Diffusion; Slippage; Langmuir Desorption

    JOURNAL NAME: Applied Mathematics, Vol.4 No.1A, January 30, 2013

    ABSTRACT: The current research of nonlinear seepage theory of shale-gas reservoir is still in its infancy. According to the characteristics of shale gas in adsorption-desorption, diffusion, slippage and seepage during accumulation, migration and production, a mathematical model of unstable seepage in dual-porosity sealed shale-gas reservoir was developed while considering Knudsen diffusion, slip-flow effect and Langmuir desorption effect. By solving the model utilizing the Stehfest numerical inversion and computer programming in Laplace space, several typical curves of bottomhole pressure were obtained. In this paper, we discussed the effects of several parameters on the pressure dynamics, i.e. storativity ratio, Langmuir volume, Langmuir pressure, adsorption-desorption, tangential momentum accommodation coefficient, flow coefficient, boundary. The results show that the desorbed gas extends the time for fluid to flow from matrix system to fracture system; the changes of Langmuir volume and Langmuir pressure associated with desorption and adsorption effect are the internal causes of the storativity ratio change; when the tangential momentum accommodation coefficient decreases, the time for pressure wave to spread to the border reduces; interporosity flow coefficient determines the occurrence time of the transition stage; boundary range restricts the time for pressure wave to spread to the border.